Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology, biomolecules and light unite to 'cook' cancer cells

18.06.2008
Researchers are testing a new way to kill cancer cells selectively by attaching cancer-seeking antibodies to tiny carbon tubes that heat up when exposed to near-infrared light.

Biomedical scientists at UT Southwestern Medical Center and nanotechnology experts from UT Dallas describe their experiments in a study available online and in an upcoming print issue of Proceedings of the National Academy of Sciences.

Scientists are able to use biological molecules called monoclonal antibodies that bind to cancer cells. Monoclonal antibodies can work alone or can be attached to powerful anti-cancer drugs, radionuclides or toxins to deliver a deadly payload to cancer cells.

In this study, the researchers used monoclonal antibodies that targeted specific sites on lymphoma cells to coat tiny structures called carbon nanotubes. Carbon nanotubes are very small cylinders of graphite carbon that heat up when exposed to near-infrared light. This type of light, invisible to the human eye, is used in TV remote controls to switch channels and is detected by night-vision goggles. Near-infrared light can penetrate human tissue up to about 1½ inches.

In cultures of cancerous lymphoma cells, the antibody-coated nanotubes attached to the cells’ surfaces. When the targeted cells were then exposed to near-infrared light, the nanotubes heated up, generating enough heat to essentially “cook” the cells and kill them. Nanotubes coated with an unrelated antibody neither bound to nor killed the tumor cells.

“Using near-infrared light for the induction of hyperthermia is particularly attractive because living tissues do not strongly absorb radiation in this range,” said Dr. Ellen Vitetta, director of the Cancer Immunobiology Center at UT Southwestern and senior author of the study. “Once the carbon nanotubes have bound to the tumor cells, an external source of near-infrared light can be used to safely penetrate normal tissues and kill the tumor cells.

“Demonstrating this specific killing was the objective of this study. We have worked with targeted therapies for many years, and even when this degree of specificity can be demonstrated in a laboratory dish, there are many hurdles to translating these new therapies into clinical studies. We’re just beginning to test this in mice, and although there is no guarantee it will work, we are optimistic.”

The use of carbon nanotubes to destroy cancer cells with heat is being explored by several research groups, but the new study is the first to show that both the antibody and the carbon nanotubes retained their physical properties and their functional abilities — binding to and killing only the targeted cells. This was true even when the antibody-nanotube complex was placed in a setting designed to mimic conditions inside the human body.

Biomedical applications of nanoparticles are increasingly attracting the attention of basic and clinical scientists. There are, however, challenges to successfully developing nanomedical reagents. One is the potential that a new nanomaterial may damage healthy cells and organisms. This requires that the effects of nanomedical reagents on cells and organisms be thoroughly studied to determine whether the reagents are inherently toxic.

“There are rational approaches to detecting and minimizing the potential for nonspecific toxicity of the nanoparticles developed in our studies,” said Dr. Rockford Draper, leader of the team from UT Dallas and a professor of molecular and cell biology.

Other researchers from UT Southwestern involved in the research were lead authors Pavitra Chakravarty, a graduate student in biomedical engineering, and Dr. Radu Marches, assistant professor in the Cancer Immunobiology Center. Authors from UT Dallas' Alan G. MacDiarmid NanoTech Institute were Dr. Inga Musselman, Dr. Paul Pantano and graduate student Pooja Bajaj. Two undergraduate students in UT Southwestern’s Summer Undergraduate Research Fellowship program — Austin Swafford from UT Dallas and Neil Zimmerman from the Massachusetts Institute of Technology — also participated.

The research was supported by the Cancer Immunobiology Center at UT Southwestern, the Robert A. Welch Foundation, the Department of Defense and the Center for Applied Biology at UT Dallas.

Dr. Vitetta is a co-inventor on a patent describing the techniques outlined in the study.

Visit http://www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services in cancer.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.org/cancercenter
http://www.utsouthwestern.edu

Further reports about: Antibodies Nanotubes near-infrared near-infrared light

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>