Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fair Trade

17.06.2008
Lanthanum chloride catalyzes hydrogen–chlorine exchange between chlorinated hydrocarbons

Because of its toxicity and the dangers involved in handling it, tetrachloromethane (carbon tetrachloride, CCl4) can no longer be used or produced in many countries.

However, the processes used in the production of other chlorinated hydrocarbons, such as chloroform (trichloromethane, CHCl3), also produce CCl4 as a byproduct. What is the best way to get rid of this unwanted substance? A team headed by Bert M. Weckhuysen at the University of Utrecht (Netherlands) has now found an interesting new approach that may lead to effective recycling.

As the researchers report in the journal Angewandte Chemie, a lanthanum chloride catalyst induces CCl4 and its reaction partner dichloromethane (CH2Cl2) to exchange one chlorine atom for a hydrogen atom, forming nearly 100 % of the desired CHCl3.

... more about:
»CCl4 »Weckhuysen »chlorine »reaction

In order to increase the catalyst surface, lanthanum chloride (LaCl3) was deposited onto carbon nanofiber supports. This results in a highly active, selective, and stable catalyst to facilitate the hydrogen–chlorine exchange between CCl4 and CH2Cl2. “Computer calculations suggest,” says Weckhuysen, “that the mechanism occurs by way of two separate hydrogen–chlorine exchange reactions.”

It appears that the surface of the LaCl3 catalyst contains not only the terminal chlorine atoms of the crystal lattice, but also other weakly adsorbed species. CH2Cl2 swaps one of its hydrogen atoms for one such weakly bound chlorine atom. It leaves behind the hydrogen atom, which is in turn weakly adsorbed to the catalyst surface. This hydrogen atom can be taken up by CCl4, which in turn leaves one of its chlorine atoms behind on the catalyst surface. Both of these reaction steps produce chloroform exclusively; no byproducts come into play.

This new catalytic reaction is astonishing in that it was previously assumed that the presence of oxygen—either in the gas phase or bound to the crystal lattice of the catalyst—is required for such reactions. Says Weckhuysen: “We are reporting for the first time a lanthanum-based catalyst material that can activate both C-H and C-Cl bonds in the absence of oxygen.”

Author: Bert M. Weckhuysen, Universiteit Utrecht (The Netherlands), http://www.anorg.chem.uu.nl/people/professors/BertWeckhuysen/index.htm

Title: Catalytic Hydrogen-Chlorine Exchange between Chlorinated Hydrocarbons under Oxygen-Free Conditions

Angewandte Chemie International Edition 2008, 47, No. 27, 5002–5004, doi: 10.1002/anie.200800270

Bert M. Weckhuysen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.anorg.chem.uu.nl/people/professors/BertWeckhuysen/index.htm

Further reports about: CCl4 Weckhuysen chlorine reaction

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>