Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer develops detergent to promote peripheral nerve healing

11.06.2008
100 patients treated successfully in first year of use

A detergent solution developed at The University of Texas at Austin that treats donor nerve grafts to circumvent an immune rejection response has been used to create acellular nerve grafts now used successfully in hospitals around the country. Research also shows early promise of the detergent solution having possible applications in spinal cord repair.

The solution – combined with an enzyme treatment conceived at the University of Florida in Gainesville – is licensed by AxoGen, an Alachua, Florida-based company, and is used to create an acellular nerve graft from human cadaver tissue, called AVANCE Nerve Graft. Nationwide, nearly 100 patients suffering nerve injuries have received AVANCE grafts, all involving peripheral nerves which transmit sensory information between the brain and muscles.

Christine Schmidt, a biomedical engineering professor, developed the detergent solution in her lab with Terry Hudson and Curt Deister, chemical engineering graduate students at the time, who are now with Genentech in California and with AxoGen, respectively.

“Surgeons are reporting some early successes,” she says.

These grafts are being used to treat people with traumatic injuries potentially resulting from lacerations, gunshots and everyday accidents, but it also has been used to treat cavernous nerves after the removal of the prostate. The AVANCE product has treated wounded soldiers and can treat the nerves in hands, arms, legs and the face.

Traditional treatment of these types of nerve trauma required harvesting an intact nerve from the patient’s body and transplanting it to repair the damaged area. However, that requires two surgeries, is more costly and leads to loss of nerve function and possible infection at the donor nerve site, Schmidt says.

Synthetic, tubular grafts are another surgery repair option. However, Schmidt says they are limited to repairing very small injuries. She adds AVANCE nerve grafts are able to bridge long nerve gaps, provide a three-dimensional pathway supporting nerve regeneration and are easily bendable because they are human nerve harvested from tissue donors, making it easier for surgeons to handle.

“This method has broader applicability,” Schmidt says. “Formerly a patient’s only option was to use their own nerve or the completely synthetic grafts.”

By using the detergent solution, the donor nerve is stripped of the cellular lipid components, which causes the immune rejection response when implanted. Schmidt’s laboratory spent four years developing the solution to be strong enough to remove rejection-inducing factors, but mild enough to preserve the delicate physical architecture of the nerve essential for regeneration. The resulting tolerated transplanted nerve provides a type of scaffolding that serves as a bridge between the two ends of the severed nerve to promote regrowth. And because the immunogenic lipid components have been extracted, patients don’t require immunosuppressant drugs.

AxoGen learned about the detergent processing work in Schmidt’s lab, licensed it and combined it with the University of Florida enzyme treatment that removes other regrowth inhibiting factors, creating the AVANCE product.

“So they’ve taken something from our lab that works really well and made it work even better,” Schmidt says.

Schmidt now is conducting spinal-cord lab testing in animals using detergent-treated peripheral nerve grafts. She is working with post-doctoral fellow Zin Khaing, a central nervous system expert.

AxoGen’s AVANCE Nerve Graft was first used on a patient in July 2007, when a 38-year-old man underwent surgery to repair a facial nerve at the Mayo Clinic in Rochester, Minn. In a recent case, it was used to repair several damaged nerves in three fingers of a Dallas resident at University Hospital – Zale Lipshy.

For photos of Schmidt, go to: http://www.engr.utexas.edu/news/action_shots/pages/schmidt_07.cfm

For information on AxoGen, visit: www.axogeninc.com.

For more information, contact: Daniel J. Vargas, Cockrell School of Engineering, 512-471-7541, Daniel.vargas2@engr.utexas.edu; Christine Schmidt, Cockrell School of Engineering, 512-471-1690, Schmidt@che.utexas.edu; Anna Tietz, AxoGen, 386-462-6844, atietz@axogeninc.com

About UT's Cockrell School of Engineering:
The University of Texas at Austin's Cockrell School of Engineering ranks among the top six public engineering schools in the United States. With the nation's fourth highest number of faculty elected members of the National Academy of Engineering, the School's more than 7,000 students gain exposure to the nation's finest engineering practitioners. Appropriately, the School's logo, an embellished checkmark used by the first UT engineering dean to denote high quality student work, is the nation's oldest quality symbol.

Christine Schmidt | EurekAlert!
Further information:
http://www.utexas.edu
http://www.engr.utexas.edu

Further reports about: AVANCE AxoGen Cockrell Engineering detergent donor peripheral

More articles from Life Sciences:

nachricht NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish
24.02.2020 | National University of Ireland Galway

nachricht Shaping the rings of molecules
24.02.2020 | University of Montreal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>