Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibacterial wipes can still spread bacteria

05.06.2008
A new study by a team of researchers at the Welsh School of Pharmacy, Cardiff University, Wales, UK, has found that antimicrobial-containing wipes currently used to decontaminate surfaces in hospitals can spread pathogens after first use.

The research highlights concerns as to the suitability of the wipes currently being deployed and the importance of a routine surveillance program in reducing risks of infection to patients.

The research, conducted by Dr. Gareth Williams at the Welsh School of Pharmacy, Cardiff University, Wales, UK, and supported by a grant from the Wales Office of research and Development for Health and Social Care (WORD), is being presented June 3, 2008 at the 108th General Meeting of the American Society for Microbiology (ASM) in Boston.

Antimicrobial-containing wipes are increasingly being used to decontaminate surfaces in hospitals. Many studies have reported on the ability of Staphylococcus aureus to contaminate and persist in the hospital environment. Germicides are commonly used on hard surfaces in hospitals to kill bacteria. The research posed the question – ‘Are we confident that these organisms are susceptible to the germicides used in our hospitals"’

... more about:
»MRSA »bacteria »surfaces

The study identified the need for a test which could thoroughly examine the ability of commonly used wipes to disinfect surfaces. As such, a robust 3-step protocol to assess the ability of wipes to remove, kill and prevent the transfer of bacteria between surfaces was subsequently developed. Using the 3-step method the study examined the ability of several commercially available wipes to disinfect surfaces contaminated with Staphylococcus aureus, including Methicillin-resistant Staphylococcus aureus (MRSA).

The results showed that some wipes can remove higher numbers of bacteria from surfaces than others. However, the wipes tested were unable to kill the bacteria that they removed. As a result, they transferred high numbers of bacteria to other surfaces. Our work suggests that if these wipes encounter highly contaminated surfaces in practice, the survival of bacteria on the wipe material could lead to the cross-contamination of other surfaces if used more than once.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: MRSA bacteria surfaces

More articles from Life Sciences:

nachricht Elucidating cuttlefish camouflage
18.10.2018 | Max-Planck-Institut für Hirnforschung

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Elucidating cuttlefish camouflage

18.10.2018 | Life Sciences

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>