Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute Scientists Build a Better DNA Molecule

27.05.2008
Scientists at the Weizmann Institute of Science demonstrate that a mathematical concept called recursion can be applied to constructing flawless synthetic DNA molecules. The ideal molecules are created in successive rounds in which faultless segments are lifted from longer, error-containing DNA strands and assembled anew.

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute's Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, using a mathematical concept called recursion. 'We all use recursion, intuitively, to compose and comprehend sentences like 'the dog that chases the cat that bit the mouse that ate the cheese that the man dropped is black,'' says Prof. Ehud Shapiro.

Recursion allows long DNA molecules to be composed hierarchically from smaller building blocks. But synthetic DNA building blocks have random errors within their sequence, as do the resulting molecules. Correcting these errors is necessary for the molecules to be useful. Even though the synthetic molecules are error prone, some of them are likely to have long stretches that do not contain any faults. These stretches of faultless DNA can be identified, extracted, and reused in another round of recursive construction. Starting from longer and more accurate building blocks in this round increases the chances of producing a flawless long DNA molecule.

The team, led by doctoral students Gregory Linshiz and Tuval Ben-Yehezkel under the supervision of Shapiro, found in their experiments that two rounds of recursive construction were enough to produce a flawless target DNA molecule. If need be, however, the error correction procedure could be repeated until the desired molecule is formed.

... more about:
»DNA »Shapiro »faultless »synthetic

The team's research, recently published in the journal Molecular Systems Biology, provides a novel way to construct faultless DNA molecules with greater speed, precision, and ease of combining synthetic and natural DNA fragments than existing methods. 'Synthetic DNA molecules are widely needed in bio-logical and biomedical research, and we hope that their efficient and accurate construction using this recursive process will help to speed up progress in these fields,' says Shapiro.

Prof. Ehud Shapiro's research is supported by the Clore Center for Biological Physics; the Arie and Ida Crown Memorial Charitable Fund; the Cymerman - Jakubskind Prize; the Fusfeld Research Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; the Henry Gutwirth Fund for Research; Ms. Sally Leafman Appelbaum, Scottsdale, AZ; the Carolito Stiftung, Switzerland; the Louis Chor Memorial Trust Fund; and the estate of Fannie Sherr, New York, NY. Prof. Shapiro is the incumbent of the Harry Weinrebe Chair of Computer Science and Biology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il/
http://wis-wander.weizmann.ac.il,
http://www.eurekalert.org.

Further reports about: DNA Shapiro faultless synthetic

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>