Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptive Evolution in Snake Proteins Could Give Insight into Human Metabolic Function and Physiology

23.05.2008
According to researchers at the University of Colorado Denver School of Medicine, new understanding about snake proteins could lead to understanding how other animals including humans accomplish aerobic respiration, and also contribute new insight into protein function and evolution important for human health.

Snakes have been previously proposed as an ideal model system to study evolution, and results from a current UC Denver School of Medicine study published in Public Library of Science (PLoS) ONE journal on May 21, support that idea, showing that their use as a model system can extend to the molecular level.

Over the last ten years, scientists have shown that snakes have remarkable abilities to regulate heart and digestive system development. They endure among the most extreme shifts in aerobic metabolism known in vertebrates. This has made snakes an excellent model for studying organ development, as well as physiological and metabolic regulation. However, the reasons that snakes are so unique had not previously been identified at the molecular level.

In the NIH-grant-funded study, David Pollock, PhD, associate professor of biochemistry and molecular genetics at the UC Denver School of Medicine, and his colleagues provide evidence that the major evolutionary changes that have occurred in snakes, such as adaptations for their extreme physiology and metabolic demands, loss of limbs and the evolution of deadly venoms, have been accompanied by massive functional redesign of core metabolic proteins.

Prior to the advent of large sequence datasets, the scientific community generally expected that innovation and divergence at the morphological and physiological level would be easily explained at the molecular level. However, molecular explanations for physiological adaptations have been rare. The UC Denver researchers show that some proteins in snakes have endured a remarkable process of evolutionary redesign that may explain why snakes have such special metabolism and physiology. Amino acids that are normally highly conserved in these proteins have been altered, affecting key molecular functions. In addition to an accelerated burst of amino acid replacements, evidence for adaptation comes from exceptional levels of molecular co-evolution and convergence at the functional core of these proteins.

“The molecular evolutionary results are remarkable, and set a new precedence for extreme protein evolutionary adaptive redesign. This represents the most dramatic burst of protein evolution in an otherwise highly conserved protein that I know of,” said Dr. David Pollock.

By integrating analyses of molecular evolution with protein structural data, the authors show that critical functions of mitochondrial proteins have been fundamentally altered during the evolution of snakes.

“We believe that our results will provide a textbook case as the most clear and dramatic example of adaptive evolution in a core metabolic protein to date, as well as providing the implication that strong molecular and physiological adaptation can be linked,” said Pollock. “The manuscript represents an important milestone in molecular evolution and vertebrate adaptation, and opens up clear and well-justified directions for further research. Many proteins that lie at the functional core of aerobic metabolism are difficult to study and we still know surprisingly little about them, despite much scientific effort. Snake metabolic proteins can increase our understanding of how these proteins function because they seem to break many of the rules, but apparently still work, and possibly work even better.”

Todd Castoe, PhD, UC Denver School of Medicine, and a lead author on the paper, said: “Snakes are an invaluable resource for evolutionary biologists, structural biologists and biochemists who can use comparative genomics to generate hypotheses for how proteins function, and how these functions may be altered and redesigned. From what we have seen so far, snakes may be the single best model system for studying extreme adaptive evolution in vertebrates.”

The full text of the paper is available at http://www.plosone.org/doi/pone.0002201.

The School of Medicine faculty work to advance science and improve care as the physicians, educators and scientists at University of Colorado Hospital, The Children’s Hospital, Denver Health, National Jewish Medical and Research Center, and the Denver Veterans Affairs Medical Center. Degrees offered by the UC Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is part of the University of Colorado Denver, one of three universities in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

Caitlin Jenney | newswise
Further information:
http://www.plosone.org/doi/pone.0002201
http://www.uchsc.edu

Further reports about: Adaptation Core Evolution Protein metabolic physiological vertebrate

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>