Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.VA. scientists find new piece of gene expression puzzle

28.06.2002


Scientists at the University of Virginia Health System have identified another step in the mysterious process of gene regulation -- what turns genes on or off, making them cause or suppress disease and other physical developments in humans. As reported in this week’s issue of the scientific journal Nature, a chemical group called ubiquitin has been shown to lie upstream of a switch that seems to control whether a gene is on or off. "Ubiquitin was first discovered on histones long ago, but before this study, we really did not know what it was doing in chromatin," said lead author and investigator Zu-Wen Sun, senior post-doctoral fellow in the Department of Biochemistry and Molecular Genetics at U.Va. Ubiquitin is one of manydistinct kinds of chemical "flags" that are known to be present on histone proteins.

Histones are protein building blocks around which the DNA is coiled much like a Slinky toy. Together, they form a structure called chromatin, where additional levels of gene regulation occur outside the DNA itself. One mechanism for regulating gene expression in the form of chromatin is through the addition or removal of chemical groups that are attached to the histone proteins. These histone proteins are nearly identical in most complex living organisms, from humans to yeast, which was used as a model in this study. They are highly decorated with different kinds of chemical groups including methyl- and acetyl- groups. Distinct patterns of these marks may operate together to form a ’histone code’ that, in turn, precedes and influences gene activities within the chromatin, according to studies published last year by C. David Allis, Byrd Professor of Biochemistry and Molecular Genetics at U.Va., who is co-author of the new study.

The four major types of histones each have a long "tail" which "wags" outside the surface of the chromatin fiber. Last year’s studies examined lysines at the fourth (K4) and ninth (K9) positions on the tail of one of the histones, H3, and revealed that when a chemical methyl group is added to these two positions, it turns genes on or off, acting much like a master control switch according to a histone code.



The new study found an unexpected mechanism that dictates whether methylation occurs at the K4 position of H3. It showed that another chemical group called ubiquitin, which is attached on the tail of a completely different histone, H2B, affected methylation of lysine at this K4 position on the H3 tail. This phenomenon, referred to as "trans-tail" regulation of the histone’s chemical changes, was unexpected, Sun said, because all other related chemical reactions previously identified, such as methylation of K4 and K9 lysines, occurred in relatively close proximity on the same histone tail.

"It is the first time that the modification on one histone’s tail has been seen to affect what occurs on another histone tail," he said. "And, in addition, we now understand better how the ubiquitin and the enzyme responsible for adding it to the histone H2B in the first place is linked to gene regulation."

Sun and Allis said that defects in the ubiquitin pathway in mice already have been generally connected to male infertility. It is possible that the problem could be traced from defects in the addition of the ubiquitin group in chromatin, to defects in the addition of the methyl group, and to subsequent changes in gene expression, which then disturbs proper cell differentiation.

"It means we have to start looking at how the whole group of these histone proteins functions together as a unit, as well as individually," Allis said. "If the ubiquitin chemical flag seems to govern methylation of lysine at K4, but not elsewhere, there is a selectivity going on, and it’s remarkably more complicated than we thought. When we reported on the methylation of lysine at K4 and K9 last summer, we had no clue it was being regulated by something else as described in our new study. So we would like to find out what is it about ubiquitin that causes such a dramatic influence on histone methylation.

"It’s a new chain reaction for chromatin," he said. "It is a major new finding in this field with a very old histone modification."

The study was funded by the National Institutes of Health and the U.Va. Cancer Center.

Catherine Wolz | EurekAlert!
Further information:
http://www.nih.gov/
http://hsc.virginia.edu/medcntr/cancer/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>