Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Stem Cells For the First Time in the Pituitary

30.04.2008
Their presence in the hormone-secreting gland of mice suggests a means of adapting to stress and life changes
A team of researchers led by scientists at Cold Spring Harbor Laboratory have for the first time identified stem cells that allow the pituitary glands of mice to grow even after birth. They found that, in contrast to most adult stem cells, these cells are distinct from those that fuel the initial growth of this important organ. The results suggest a novel way that the hormone-secreting gland may adapt, even in adolescents and adults, to traumatic stress or to normal life changes like pregnancy.

Seeking Adult Stem Cells
Maturity, in some respects, brings diminished possibilities. As a fertilized egg cell repeatedly divides to grow into a mature animal, most of the resulting cells become ever more specialized. But a small number of cells, known as stem cells, remain uncommitted even as they spawn more specialized progeny. The most versatile stem cells, taken from days-old embryos, are able to form any cell type — but studying them in people is controversial. Even in adults, however, other types of stem cell persist that have a more limited repertoire. Some replace specific cells as they wear out; others help to rebuild damaged tissues. Still other stem cells are suspected by some scientists of starting or maintaining cancers.

In spite of their importance, stem cells are hard to spot among the multitude of cells in complex tissue. Several years ago, neuroscientist Grigori Enikolopov, Ph.D., an associate professor at Cold Spring Harbor Laboratory (CSHL), and his colleagues developed a tool to look for stem cells that give rise to new adult brain cells. Researchers had known that a gene called Nestin was active in these neural stem cells. The CSHL team genetically engineered mice so that the same conditions that activate Nestin in a particular cell also make it glow green under ultraviolet light.

Using these mice gives researchers an important pointer to cells that may be adult stem cells. Almost 100 research teams around the world have now used these special mice to help find adult stem cells in hair follicles, liver, muscle, and other tissues.

Looking at the pituitary
One place where stem cells had been suspected — but never found — is the pituitary gland. This organ, which in people is about the size of a pea, sits at the base of the brain, where it secretes hormones that regulate various processes throughout the body. In mice, the gland develops in the embryo, but then has a second growth spurt. “A few weeks after they are born,” says Dr. Enikolopov, “the pituitary undergoes massive expansion” that suggests a role for adult stem cells.

Anatoli Gleiberman, Ph.D., a researcher in the lab of pituitary expert M. Geoff Rosenfeld at the University of California, San Diego, initiated a collaboration between the two labs to look for pituitary stem cells. The researchers used the Nestin-tracking mice to identify candidate cells in the anterior pituitary, the section of the organ that secretes hormones. They then used other techniques to show that these are true stem cells. “There are six main lineages in the adult pituitary,” says Dr. Enikolopov, “and we can demonstrate that one adult stem cell can generate all six lineages,” with each cell type secreting a different hormone.

A distinct kind of stem cell
These cells differ from most adult stem cells, however. “In most cases that we know,” says Dr. Enikolopov, “cells that become stem cells of the adult have been also contributing to embryonic development and continue to serve as stem cells in the adult.” The research team demonstrated that adult stem cells in the pituitary did not help construct the embryonic organ.

Their research, the scientists suggest, indicates that the adult mouse pituitary includes two similar — but not identical — types of hormone-producing cells: some that grew in the developing embryo, and some that appeared later. They speculate that having two sets of cells may let the organ respond differently to changing body conditions. Dr. Enikolopov notes that hormones strongly influence human neuropsychiatric phenomena, including stress and depression that are his main research focus. “All are mediated through the pituitary,” he said, so changes that happen during the later growth of the gland could have lasting effects.

“Genetic approaches identify adult pituitary stem cells” appears in the April 29, 2008 edition of the Proceedings of the National Academy of Sciences. Along with Dr. Enikolopov, Dr. Michael Geoff Rosenfeld, who is a Howard Hughes Medical Institute Investigator at the University of California at San Diego School of Medicine, is a corresponding author of the paper. The complete citation is as follows: Anatoli S. Gleiberman, Tatyana Michurina, Juan M. Encinas, Jose L. Roig, Peter Krasnov, Francesca Balordi, Gord Fishell, Michael G. Rosenfeld, and Grigori Enikolopov. The paper is available online at http://www.pnas.org/cgi/doi/10.1073/pnas.0801644105.

Cold Spring Harbor Laboratory is a private, nonprofit research and education institution dedicated to exploring molecular biology and genetics in order to advance the understanding and ability to diagnose and treat cancers, neurological diseases and other causes of human suffering.

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu
http://www.pnas.org/cgi/doi/10.1073/pnas.0801644105

Further reports about: Embryo Enikolopov Organ Stem hormone pituitary

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>