Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tool Scans the Genome for Disease-relevant Variations

29.04.2008
Investigating the genetic background of major diseases has now become easier. As part of a European-Japanese Consortium (STAR), Dr. Kathrin Saar and Prof. Norbert Hübner from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have constructed a genome map with more than 300 different rat strains.

The researchers are convinced that this new tool can help understand the development of cardiovascular diseases or diabetes in laboratory rats as well as in humans. The paper of the STAR consortium has been published online in the current issue of the journal Nature Genetics* (Vol. 40, No. 5, pp. 560 - 566, 2008).

Laboratory rats are particularly suited for analyzing the genetic causes of epidemiological-relevant diseases. For over 150 years, scientists have been using laboratory rats as model animals in clinical research laboratories. It is known that the DNA sequence of every organism shows natural variations called "single nucleotide polymorphisms" or SNPs. Typically, the genome of an individual has several million SNPs and, thus, he or she differs at this level from others within the same species. Scientists investigate these SNPs to clarify whether they are linked to or influence the development of certain diseases. The MDC researchers and their colleagues in Europe and Japan have now identified three million SNPs in the genome of the rat. Thus, they were able to expand and improve upon the existing genomic map which until now was based on the analyses of only three rat strains.

SNP and haplotype mapping for genetic analysis in the rat
The STAR Consortium1
The complete list of authors is as follows:
The STAR Consortium: Kathrin Saar1, Alfred Beck2, Marie-Thérèse Bihoreau3, Ewan Birney4, Denise Brocklebank3, Yuan Chen4, Edwin Cuppen5, Stephanie Demonchy6, Paul Flicek4, Mario Foglio6, Asao Fujiyama7,8, Ivo G. Gut6, Dominique Gauguier3, Roderic Guigo9, Victor Guryev5, Matthias Heinig1, Oliver Hummel1, Niels Jahn10, Sven Klages2, Vladimir Kren11, Heiner Kuhl2, Takashi Kuramoto12, Yoko Kuroki7, Doris Lechner6, Young-Ae Lee1, Nuria Lopez-Bigas9, G. Mark Lathrop6, Tomoji Mashimo12, Michael Kube2, Richard Mott3, Giannino Patone1, Jeanne-Antide Perrier-Cornet6, Matthias Platzer10, Michal Pravenec11, Richard Reinhardt2, Yoshiyuki Sakaki7, Markus Schilhabel10, Herbert Schulz1, Tadao Serikawa12, Medya Shikhagaie9, Shouji Tatsumoto7, Stefan Taudien10, Atsushi Toyoda7, Birger Voigt12, Diana Zelenika6, Heike Zimdahl1 & Norbert Hübner1
... more about:
»Molecular »SNP »STAR

1Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125, Berlin, Germany. 2Max Planck Institute for Molecular Genetics, Berlin, Germany. 3Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. 4European Bioinformatics Institute, Hinxton, UK. 5Hubrecht Institute, Utrecht, The Netherlands. 6CEA/Institut de Génomique, Centre National de Génotypage, Evry, France. 7RIKEN Genomic Sciences Center, Kanagawa 230-0045, Japan. 8National Institute of Informatics, Tokyo 101-8430, Japan. 9Centre de Regulacio Genomica, Barcelona, Spain. 10Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut, Jena, Germany. 11Institute of Physiology, Czech Academy of Sciences and 1st Medical Faculty, Charles University, Prague, Czech Republic. 12Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/en/news
http://www.mdc-berlin.de/en/news/2004/20040206-variations_in_the_genome/index.html

Further reports about: Molecular SNP STAR

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>