Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tool Scans the Genome for Disease-relevant Variations

29.04.2008
Investigating the genetic background of major diseases has now become easier. As part of a European-Japanese Consortium (STAR), Dr. Kathrin Saar and Prof. Norbert Hübner from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have constructed a genome map with more than 300 different rat strains.

The researchers are convinced that this new tool can help understand the development of cardiovascular diseases or diabetes in laboratory rats as well as in humans. The paper of the STAR consortium has been published online in the current issue of the journal Nature Genetics* (Vol. 40, No. 5, pp. 560 - 566, 2008).

Laboratory rats are particularly suited for analyzing the genetic causes of epidemiological-relevant diseases. For over 150 years, scientists have been using laboratory rats as model animals in clinical research laboratories. It is known that the DNA sequence of every organism shows natural variations called "single nucleotide polymorphisms" or SNPs. Typically, the genome of an individual has several million SNPs and, thus, he or she differs at this level from others within the same species. Scientists investigate these SNPs to clarify whether they are linked to or influence the development of certain diseases. The MDC researchers and their colleagues in Europe and Japan have now identified three million SNPs in the genome of the rat. Thus, they were able to expand and improve upon the existing genomic map which until now was based on the analyses of only three rat strains.

SNP and haplotype mapping for genetic analysis in the rat
The STAR Consortium1
The complete list of authors is as follows:
The STAR Consortium: Kathrin Saar1, Alfred Beck2, Marie-Thérèse Bihoreau3, Ewan Birney4, Denise Brocklebank3, Yuan Chen4, Edwin Cuppen5, Stephanie Demonchy6, Paul Flicek4, Mario Foglio6, Asao Fujiyama7,8, Ivo G. Gut6, Dominique Gauguier3, Roderic Guigo9, Victor Guryev5, Matthias Heinig1, Oliver Hummel1, Niels Jahn10, Sven Klages2, Vladimir Kren11, Heiner Kuhl2, Takashi Kuramoto12, Yoko Kuroki7, Doris Lechner6, Young-Ae Lee1, Nuria Lopez-Bigas9, G. Mark Lathrop6, Tomoji Mashimo12, Michael Kube2, Richard Mott3, Giannino Patone1, Jeanne-Antide Perrier-Cornet6, Matthias Platzer10, Michal Pravenec11, Richard Reinhardt2, Yoshiyuki Sakaki7, Markus Schilhabel10, Herbert Schulz1, Tadao Serikawa12, Medya Shikhagaie9, Shouji Tatsumoto7, Stefan Taudien10, Atsushi Toyoda7, Birger Voigt12, Diana Zelenika6, Heike Zimdahl1 & Norbert Hübner1
... more about:
»Molecular »SNP »STAR

1Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125, Berlin, Germany. 2Max Planck Institute for Molecular Genetics, Berlin, Germany. 3Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. 4European Bioinformatics Institute, Hinxton, UK. 5Hubrecht Institute, Utrecht, The Netherlands. 6CEA/Institut de Génomique, Centre National de Génotypage, Evry, France. 7RIKEN Genomic Sciences Center, Kanagawa 230-0045, Japan. 8National Institute of Informatics, Tokyo 101-8430, Japan. 9Centre de Regulacio Genomica, Barcelona, Spain. 10Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut, Jena, Germany. 11Institute of Physiology, Czech Academy of Sciences and 1st Medical Faculty, Charles University, Prague, Czech Republic. 12Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/en/news
http://www.mdc-berlin.de/en/news/2004/20040206-variations_in_the_genome/index.html

Further reports about: Molecular SNP STAR

More articles from Life Sciences:

nachricht Computer simulations visualize how DNA is recognized to convert cells into stem cells
17.02.2020 | Max-Planck-Institut für molekulare Biomedizin

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

How do rotor blades deform in wind gusts?

17.02.2020 | Physics and Astronomy

Understanding Metal Ion Release from Hip Implants

17.02.2020 | Materials Sciences

Computer simulations visualize how DNA is recognized to convert cells into stem cells

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>