Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two suppressor molecules affect 70 genes in leukemia

28.04.2008
By restoring two small molecules that are often lost in chronic leukemia, researchers were able to block tumor growth in an animal model.

The research, using human chronic lymphocytic leukemia (CLL) cells, also showed that loss of the two molecules affects 70 genes, most of which are involved in critical functions such as cell growth, death, proliferation and metabolism.

The findings reveal how the two molecules, called miR-15a and miR-16-1, normally protect against cancer, and suggest a possible new treatment strategy for CLL.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center, was published recently in the Proceedings of the National Academy of Sciences.

... more about:
»CLL »MicroRNA »Molecules »affect »leukemia

“These findings give us a signature of 70 deregulated genes that we believe finally explains at the molecular level how these two molecules contribute to CLL,” says principal investigator Carlo M. Croce, director of Ohio State’s human cancer genetics program.

“The identification of these genes could also have important significance for the development of new therapeutic approaches for chronic leukemias.”

The two molecules are forms of microRNA, tiny molecules that cells use to help regulate the type and amount of proteins they make.

In 2005, Croce and his colleagues first showed that these two microRNAs target a gene called Bcl2, which normally helps cells survive by protecting them from accidental self-destruction. In CLL, however, the gene behaves abnormally and helps the leukemic cells survive long after they should have died.

Croce and his colleagues believe that loss of the two molecules alters the gene’s behavior.

For the new study, the investigators first injected mice with leukemia cells in which they had restored the two microRNAs. This completely suppressed tumor growth in three of five animals. Mice injected with leukemic cells that lacked the two molecules, on the other hand, developed significant tumors.

“This clearly showed that these two microRNAs can suppress tumor development,” says coauthor Muller Fabrri, a researcher in Croce’s laboratory.

Because each microRNA regulates many genes, the investigators wanted to learn which ones, in addition to Bcl2, are affected in cells lacking the two molecules.

First, they measured differences in gene activity in laboratory-grown CLL cells that had either high or low levels of the two molecules.

Next, they measured the levels of all the proteins in the two groups of cells. This proteomic analysis revealed 27 proteins with highly altered amounts. These were identified and shown to be involved in cell growth, cell death and cancer development.

Last, the researchers used human CLL cells from 16 patients to verify the gene targets.

“Together, these extensive experiments revealed the signature of 70 genes controlled by the two microRNAs,” Fabbri says. “They show that microRNAs can affect different biochemical pathways in different ways, and they explain at the molecular level what these two miRNAs do in this disease.”

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: CLL MicroRNA Molecules affect leukemia

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>