Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find potential in yeast for selecting Lou Gehrig's disease drugs

22.04.2008
Researchers from the University of Pennsylvania School of Medicine are developing a novel approach to screen for drugs to combat neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, using yeast cells. In recent months a number of mutations have been found in a disease protein called TDP-43, which is implicated in ALS and certain types of frontotemporal dementia (FTD).

“We've created a yeast model, the same cells that bakers and brewers use to make bread and beer, to express TDP-43,” explains lead author Aaron D. Gitler, PhD, Assistant Professor of Cell and Developmental Biology. “Remarkably, this protein formed clumps in our simple yeast cells just like it does in human nerve cells. In our paper we determine which segments of the mutated TDP-43 protein cause it to aggregate and which parts cause it to be toxic.” Gitler and colleagues report their findings in this week’s advance online issue of the Proceedings of the National Academy of Sciences.

Two years ago, other Penn investigators found that TDP-43 accumulated abnormally in post-mortem brain or nervous system tissue from individuals diagnosed with either ALS or FTD. TDP-43 is normally involved in RNA and DNA processing, among other cellular tasks. The recent TDP-43 mutation studies confirm the protein’s role in causing disease.

The clumping process of proteins takes decades in humans but the researchers could model the process within a matter of hours in yeast cells. This now allows for rapid genetic screening to identify proteins that can reverse the harmful effects of the disease protein; visualizing the clumping; and testing molecules that could eliminate or prevent clumping.

... more about:
»Disease »FTD »Gitler »Mutation »Screen »TDP-43 »clumps »toxic »yeast

“Our yeast model will be a powerful tool for performing large-scale drug screens to look for small molecules that can prevent TDP-43 from aggregating or that can protect cells from aggregated TDP-43,” notes Gitler.

Normally, TDP-43 stays in the nucleus, but in ALS and FTD it somehow gets sequestered into the cell’s cytoplasm, where it forms clumps. “When we put TDP-43 in yeast cells at normal human levels, it remained in the nucleus,” explains Gitler. “However, when it was expressed at higher levels, thereby overwhelming the quality control systems of the cell, TDP-43 clumped in the cytoplasm. At even higher levels, TDP-43 became toxic to the yeast cells, making them unable to grow.” This experiment suggests, for the first time, that TDP-43 clumps can be a direct cause of cell toxicity.

In earlier studies at Penn, researchers found fragments of TDP-43 that were abundant in the clumps found in the post-mortem tissue of ALS and FTD patients. Knowing this, Gitler and colleagues chopped TDP-43 into many fragments to find the segments that are responsible for clumping and toxicity. They found a very similar segment that was also toxic to yeast cells. Designs of future drugs will depend on what part of the TDP-43 protein needs to be disabled.

The researchers are able to overexpress every yeast gene to determine which genes can rescue the yeast cells from the TDP-43 toxicity. In addition to these genetic screens, Gitler and colleagues are pursuing drug screens with their TDP-43 model. “We can screen hundreds of thousands of small molecules to see which can get into a yeast cell and prevent TDP-43 from being toxic,” says Gitler. “Then we can take the hits we find and test them in animal models. We have already made mutations identical to what have been found in patients and have introduced those in the yeast model.”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Disease FTD Gitler Mutation Screen TDP-43 clumps toxic yeast

More articles from Life Sciences:

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>