Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude discovery offers new avenues to understanding an aggressive form of leukemia

15.04.2008
Finding that a combination of genetic mutations can cause an aggressive form of acute lymphoblastic leukemia could lead to new cancer-fighting therapies

Researchers at St. Jude Children¡¦s Research Hospital have discovered evidence that a series of genetic mutations work together to initiate most cases of an aggressive and often-fatal form of acute lymphoblastic leukemia (ALL).

These defects, known as "cooperating oncogenic lesions," include the deletion of a gene, IKZF1, whose protein, Ikaros, normally helps guide the development of a blood stem cell into a lymphocyte. The researchers also found that loss of the same gene accompanied the transformation of chronic myelogenous leukemias (CMLs) to a life-threatening acute stage.

"These findings provide new avenues to pursue to gain a better understanding of these disease processes and, ultimately, to develop better therapies," said James R. Downing, M.D., St. Jude scientific director and chair of the Department of Pathology.

... more about:
»ALL »BCR-ABL1 »CML »Downing »IKAROS »lesion »leukemia »mutations

The new study, which he and his colleagues reported in the advance online publication of the journal "Nature," adds further support to a key concept in cancer genetics: Malignancies frequently require mutations in multiple genes in order to develop.

Cells contain oncogenes, which exist harmlessly until something triggers them to turn the cells malignant.

"It really takes a series of genetic lesions to lead to cancer," Downing said. "You may get activation of an oncogene, but you may also need activation of a tumor suppressor gene and an alteration in a cell-death pathway."

St. Jude researchers sought to identify genetic differences between CML and a form of acute leukemia known as BCR-ABL1ƒ{positive ALL.

Both diseases are characterized by the Philadelphia chromosome, which results from the translocation (joining) of parts of two different chromosomes. The result of this translocation is the expression of BCR-ABL1, an oncogene.

"It appears from our study, and other work published previously, that all you need to get CML is that chromosomal translocation and BCR-ABL1 expression," Downing said.

In their new study, the researchers re-examined the genetic makeup of 304 ALL patients who had been studied earlier. The group included 43 pediatric and adult BCR-ABL1 ALL patients and 23 adults with CML. Using a more sensitive technology, the scientists increased the number of genetic mutations found in their original gene survey.

In the first study, the gene most commonly altered was one called PAX5, followed by a gene designated IKZF1. Its protein, Ikaros, is involved in the development and differentiation of B lymphocyte cells, which are part of the immune system.

"The vast majority of pediatric acute lymphoblastic leukemias are of B-cell lineage," Downing said.

Among the ALL patients, the researchers found an average of 8.79 copy number alterations, a form of genetic change linked to the development and progression of cancer. The most common change was deletion of the gene for Ikaros.

The gene was deleted in 36 (83.7 percent) of the BCR-ABL1 ALL patients, including 76.2 percent of the pediatric and 90.9 percent of the adult cases.

"The loss of the Ikaros gene is a nearly obligatory lesion for the development of BCR-ABL1 ALL," Downing said, "and clearly must be a genetic lesion that is cooperating with BCR-ABL1."

Moreover, a gene known as CDKN2A was deleted in 53.5 percent of the BCR-ABL1 ALL patients, 87.5 percent of whom also had lost the gene for Ikaros. The PAX5 deletion occurred in 51 percent of the BCR-ABL1 ALL patients; and 95 percent of these people were missing the Ikaros gene.

Among the CML patients whose disease converted to ALL, two out of three had the deletion of the Ikaros gene; a lower percentage of those who converted to acute myeloblastic leukemia had the same gene deleted. That finding suggested that the deletion of Ikaros is cooperating with BCR-ABL1 to cause ALL.

"That is an important finding that may give insight into how that transformation occurs, or it may give insight into a better way to treat the disease, if one can figure out how the Ikaros deletion is working," Downing said.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: ALL BCR-ABL1 CML Downing IKAROS lesion leukemia mutations

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>