Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood pressure drugs halt pancreatic cancer cell growth

15.04.2008
Researchers at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia are inching closer to understanding how common blood pressure medications might help prevent the spread of pancreatic cancer. They have found in the laboratory that one type of pressure-lowering drug called an angiotensin receptor blocker inhibits pancreatic cancer cell growth and causes cell death.

In earlier work in the laboratory, Hwyda Arafat, M.D., Ph.D., associate professor of Surgery at Jefferson Medical College, and her team showed that angiotensin receptor blockers may help reduce the development of tumor-feeding blood vessels, a process called angiogenesis. Other studies have linked a lower incidence of cancer with the use of angiotensin blocking therapies. Such drugs, she says, may become part of a novel strategy to control the growth and spread of cancer.

One of these drugs – AT1R (Ang II type 1 receptor) blockers – inhibit the function of the hormone angiotensin II (Ang II) in the pancreas. The receptor is expressed in pancreatic cancer cells. Ang II increases the production of VEGF, a vascular factor that promotes blood vessel growth in a number of cancers. High VEGF levels have been correlated with poor cancer prognosis and early recurrence after surgery. Dr. Arafat’s research team has shown that AngII indirectly causes VEGF expression by increasing AT1R expression.

Dr. Arafat’s group explored the effects of blocking AT1R on the pancreatic cancer cell reproductive cycle and programmed cell death, or apoptosis, and the mechanisms involved. It found that blocking AT1R inhibited pancreatic cancer cell growth and promoted cell death. “This happens through inducing the activity of the gene p53, which controls programmed cell death, and also by inhibiting anti-cell death pathways such as those involving the gene bcl-2.” The team reports its findings April 14, 2008 at the annual meeting of the American Association for Cancer Research in San Diego.

... more about:
»AT1R »Angiotensin »blocker »pancreatic »receptor

The researchers also found that blocking AT1R affects p21, a gene that regulates the cell cycle. “We found that blocking this receptor can cause cell cycle arrest,” she notes.

“This is really exciting because the role of this receptor has never been known,” Dr. Arafat says. “It’s never been connected to cell division or apoptosis. We’re also now further exploring the mechanisms involved. The exciting thing is that this receptor already has so many available pharmaceutical blockers on the market.” Ultimately, the group hopes to be able to test these agents in human trials, she says.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: AT1R Angiotensin blocker pancreatic receptor

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>