Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics on a chip

18.06.2002


‘Golden approach’ human proteine classification
Proteomics on a chip


Knowledge of the human proteome may provide us with even more insight than knowledge of DNA. This ‘protein blueprint’ of a human contains valuable information about cell properties and disease causes. A single cell, however, already consists of several thousands of proteines. To be able to classify them, dr. Richard Schasfoort of the University of Twente is developing a special chip, able to make hundreds or thousands proteine analyses at the same time. For his ‘out-of-the-ordinary’ ideas, he got the Dutch Innovation impulse last year. Important steps have been made already, in the development of a chip for patient monitoring of prostate cancer, using the same proteine analysis technique. In his new Biochip research group at UT, starting July 1st, Schasfoort is extending this concept towards use in proteomics.


The blueprint of an organism can be found in the proteome, the total ‘package’ of proteins being expressed within this organism. Not all proteins are in a direct way linked to DNA, they interact themselves. Finding the protein pattern – each cell has about 10000 proteins, of which several thousands are unknown - is a new race, providing more information than the DNA-map. The Human Proteome Organisation (HUPO) faces the challenge of identifying over 300.000 proteines.

Gold

There are techniques for this, Schasfoort admits. But for these amounts of data, they are very time-consuming: they are in fact based on visual recognition of proteines and selecting the interesting ones with a kind of chemical ‘pair of tweezers’. Schasfoort is convinced of the need for a new approach: he proposes a combination of ‘microfluidics’ and a detection technique called Surface Plasmon Resonance imaging (SPR). In this way, he wants to build a complete lab on a chip, for imaging of hundreds or thousands of proteines at the same time. On the chip, a separation technique splits the proteome in individual proteins. They ‘land’ on tiny gold surfaces, specially prepared for capturing the proteines: one proteine on every gold. Caused by the interaction, a change in refractive index is induced: in this way optical detection is possible. A laser scans all the golden rectangles with proteines on them, and a camera makes an image of the proteine pattern.

Schasfoort’s new Biochip group is part of the chair of Biophysical Techniques, faculty of Applied Physics, University of Twente. In this group, Schasfoort wants to develop a complete integrated system. For this idea, NWO the Dutch organisation for scientific research, granted him with the ‘Vernieuwingsimpuls’, about 700 thousand euro for a period of five years. Schasfoort doesn’t start ‘from scratch’: he already developed the basic components, for a prostate cancer monitoring system using the same technique SPR. This is done in a EU-project to be finished in approx half a year. In the project, directed by IMEC in Belgium, detection of the cancer-specific proteine in blood is possible, in quantities of less than a tenth of a nanogram per millilitre. All handling and separation of fluids is done on the same chip. The laser and the camera can be made very small as well.

Dr. Richard Schasfoort (43), chemical engineer, developed large-scale industrial SPR systems before, in a company called Ibis Technologies. After getting acquainted with microfluidics in the group of Albert van den Berg (MESA+), he decided to combine best of both worlds. The power of the ‘lab-on-a-chip’ concept was already seen in the human genome project, when analysis chips became commercially available. Schasfoort starts with a group of six scientists and technicians.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>