Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteomics on a chip

18.06.2002


‘Golden approach’ human proteine classification
Proteomics on a chip


Knowledge of the human proteome may provide us with even more insight than knowledge of DNA. This ‘protein blueprint’ of a human contains valuable information about cell properties and disease causes. A single cell, however, already consists of several thousands of proteines. To be able to classify them, dr. Richard Schasfoort of the University of Twente is developing a special chip, able to make hundreds or thousands proteine analyses at the same time. For his ‘out-of-the-ordinary’ ideas, he got the Dutch Innovation impulse last year. Important steps have been made already, in the development of a chip for patient monitoring of prostate cancer, using the same proteine analysis technique. In his new Biochip research group at UT, starting July 1st, Schasfoort is extending this concept towards use in proteomics.


The blueprint of an organism can be found in the proteome, the total ‘package’ of proteins being expressed within this organism. Not all proteins are in a direct way linked to DNA, they interact themselves. Finding the protein pattern – each cell has about 10000 proteins, of which several thousands are unknown - is a new race, providing more information than the DNA-map. The Human Proteome Organisation (HUPO) faces the challenge of identifying over 300.000 proteines.

Gold

There are techniques for this, Schasfoort admits. But for these amounts of data, they are very time-consuming: they are in fact based on visual recognition of proteines and selecting the interesting ones with a kind of chemical ‘pair of tweezers’. Schasfoort is convinced of the need for a new approach: he proposes a combination of ‘microfluidics’ and a detection technique called Surface Plasmon Resonance imaging (SPR). In this way, he wants to build a complete lab on a chip, for imaging of hundreds or thousands of proteines at the same time. On the chip, a separation technique splits the proteome in individual proteins. They ‘land’ on tiny gold surfaces, specially prepared for capturing the proteines: one proteine on every gold. Caused by the interaction, a change in refractive index is induced: in this way optical detection is possible. A laser scans all the golden rectangles with proteines on them, and a camera makes an image of the proteine pattern.

Schasfoort’s new Biochip group is part of the chair of Biophysical Techniques, faculty of Applied Physics, University of Twente. In this group, Schasfoort wants to develop a complete integrated system. For this idea, NWO the Dutch organisation for scientific research, granted him with the ‘Vernieuwingsimpuls’, about 700 thousand euro for a period of five years. Schasfoort doesn’t start ‘from scratch’: he already developed the basic components, for a prostate cancer monitoring system using the same technique SPR. This is done in a EU-project to be finished in approx half a year. In the project, directed by IMEC in Belgium, detection of the cancer-specific proteine in blood is possible, in quantities of less than a tenth of a nanogram per millilitre. All handling and separation of fluids is done on the same chip. The laser and the camera can be made very small as well.

Dr. Richard Schasfoort (43), chemical engineer, developed large-scale industrial SPR systems before, in a company called Ibis Technologies. After getting acquainted with microfluidics in the group of Albert van den Berg (MESA+), he decided to combine best of both worlds. The power of the ‘lab-on-a-chip’ concept was already seen in the human genome project, when analysis chips became commercially available. Schasfoort starts with a group of six scientists and technicians.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>