Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team probes mysteries of oceanic bacteria

04.03.2008
Microbes living in the oceans play a critical role in regulating Earth's environment, but very little is known about their activities and how they work together to help control natural cycles of water, carbon and energy.

A team of MIT researchers led by Professors Edward DeLong and Penny Chisholm is trying to change that.

Borrowing gene sequencing tools developed for sequencing the human genome, the researchers have devised a new method to analyze gene expression in complex microbial populations. The work could help scientists better understand how oceans respond to climate change.

"This project can help us get a better handle on the specific details of how microbes affect the flux of energy and matter on Earth, and how microbes respond to environmental change," said DeLong, a professor of biological engineering and civil and environmental engineering.

... more about:
»CEE »DNA »DeLong »known »mRNA »microbe »microbial »sequences
"The new approach also has other potential applications, for example, one can now realistically consider using indigenous microbes as in situ biosensors, as well as monitor the activities of human-associated microbial communities much more comprehensively,"

DeLong said.

Their technique, which has already yielded a few surprising discoveries, is reported in the March 3 issue of the Proceedings of the National Academy of Sciences.

The work was facilitated by the Center for Microbial Oceanography:
Research and Education (C-MORE), a National Science Foundation Science and Technology Center established in 2006 to explore microbial ocean life, most of which is not well understood.
The traditional way to study bacteria is to grow them in Petri dishes in a laboratory, but that yields limited information, and not all strains are suited to life in the lab. "The cast of characters we can grow in the lab is a really small percentage of what's out there,"

said DeLong, who is research coordinator for C-MORE.

The MIT team gathers microbe samples from the waters off Hawaii, in a part of the ocean known as the North Pacific Gyre.

Each liter of ocean water they collect contains up to a billion bacterial cells. For several years, researchers have been sequencing the DNA found in those bacteria, creating large databases of prevalent marine microbial genes found in the environment.

However, those DNA sequences alone cannot reveal which genes the bacteria are actually using in their day-to-day activities, or when they are expressing them.

"It's a lot of information, and it's hard to know where to start,"
said DeLong. "How do you know which genes are actually important in any given environmental context?"

To figure out which genes are expressed, DeLong and colleagues sequenced the messenger RNA (mRNA) produced by the cells living in complex microbial communities. mRNA carries instructions to the protein-building machinery of the cell, so if there is a lot of mRNA corresponding to a particular gene, it means that gene is highly expressed.

The new technique requires the researchers to convert bacterial mRNA to eukaryotic (non-bacterial) DNA, which can be more easily amplified and sequenced. They then use sequencing technology that is fast enough to analyze hundreds of millions of DNA base pairs in a day.

Once the sequences of highly expressed mRNA are known, the researchers can compare them with DNA sequences in the database of bacterial genes and try to figure out which genes are key players and what their functions are.

The team found some surprising patterns of gene expression, DeLong said. For example, about half of the mRNA sequences found are not similar to any previously known bacterial genes.

Lead authors of the paper are Jorge Frias-Lopez, research scientist in MIT's Department of Civil and Environmental Engineering (CEE), and CEE graduate student Yanmei Shi. Maureen Coleman, graduate student in CEE, Gene Tyson, postdoctoral associate in CEE, and Stephan Schuster of Pennsylvania State University also authored the paper with Chisholm and DeLong.

Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: CEE DNA DeLong known mRNA microbe microbial sequences

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>