Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic structure of DNA revealed for 1st time

28.02.2008
Utilizing a technique that combines low temperature measurements and theoretical calculations, Hebrew University of Jerusalem scientists and others have revealed for the first time the electronic structure of single DNA molecules.

The knowledge of the electronic properties of DNA is an important issue in many scientific areas from biochemistry to nanotechnology -- for example in the study of DNA damage by ultraviolet radiation that may cause the generation of free radicals and genetic mutations. In those cases, DNA repair occurs spontaneously via an electronic charge transfer along the DNA helix that restores the damaged molecular bonds.

In nano-bioelectronics, which is the advanced research field devoted to the study of biological molecules (to produce electrical nanocircuits, for example), it has been suggested that DNA, or its derivatives, may become used as possible conducting molecular wires in the realization of molecular computing networks which are smaller and more efficient than those produced today with silicon technology.

The knowledge that has been acquired in this project, say the researchers, may also be relevant for current attempts to develop new sophisticated, reliable, faster and cheaper ways to decode the sequence of human DNA.

... more about:
»DNA »Electronic »structure

The research, published in the prestigious journal Nature Materials, is a result of an international collaboration. The research was conducted by Errez Shapir and coordinated by Dr. Danny Porath at the Department of Physical Chemistry and Center for Nanoscience and Nanotechnology at the Hebrew University and by Dr. Rosa Di Felice at the S3 Center of INFM-CNR in Modena, Italy. Also collaborating in the project were Prof. Alexander Kotlyar at Tel Aviv University, who synthesized the molecules, the CINECA supercomputing center in Italy, and Prof. Gianaurelio Cuniberti at the University of Regensburg, Germany.

In their work, the researchers were able to decode the electronic structure of DNA and to understand how the electrons distribute into the various parts of the double helix, a result that has been pursued by scientists for many years, but was previously hindered by technical problems.

The success of this project was finally achieved thanks to collaboration between experimental and theoretical scientists who worked with long and homogeneous DNA molecules at minus 195 degrees Celsius, using a scanning tunneling microscope (STM) to measure the current that passes across a molecule deposited on a gold substrate. Then, by means of theoretical calculations based on the solution of quantum equations, the electronic structure of DNA corresponding to the measured current has been obtained. These results also suggest an identification of the parts of the double helix that contribute to the charge flow along the molecule.

For further information:
Jerry Barach,
Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu,
Hebrew University spokesperson,
Tel: 054-8820016.

Jerry Barach | The Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: DNA Electronic structure

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>