Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic structure of DNA revealed for 1st time

28.02.2008
Utilizing a technique that combines low temperature measurements and theoretical calculations, Hebrew University of Jerusalem scientists and others have revealed for the first time the electronic structure of single DNA molecules.

The knowledge of the electronic properties of DNA is an important issue in many scientific areas from biochemistry to nanotechnology -- for example in the study of DNA damage by ultraviolet radiation that may cause the generation of free radicals and genetic mutations. In those cases, DNA repair occurs spontaneously via an electronic charge transfer along the DNA helix that restores the damaged molecular bonds.

In nano-bioelectronics, which is the advanced research field devoted to the study of biological molecules (to produce electrical nanocircuits, for example), it has been suggested that DNA, or its derivatives, may become used as possible conducting molecular wires in the realization of molecular computing networks which are smaller and more efficient than those produced today with silicon technology.

The knowledge that has been acquired in this project, say the researchers, may also be relevant for current attempts to develop new sophisticated, reliable, faster and cheaper ways to decode the sequence of human DNA.

... more about:
»DNA »Electronic »structure

The research, published in the prestigious journal Nature Materials, is a result of an international collaboration. The research was conducted by Errez Shapir and coordinated by Dr. Danny Porath at the Department of Physical Chemistry and Center for Nanoscience and Nanotechnology at the Hebrew University and by Dr. Rosa Di Felice at the S3 Center of INFM-CNR in Modena, Italy. Also collaborating in the project were Prof. Alexander Kotlyar at Tel Aviv University, who synthesized the molecules, the CINECA supercomputing center in Italy, and Prof. Gianaurelio Cuniberti at the University of Regensburg, Germany.

In their work, the researchers were able to decode the electronic structure of DNA and to understand how the electrons distribute into the various parts of the double helix, a result that has been pursued by scientists for many years, but was previously hindered by technical problems.

The success of this project was finally achieved thanks to collaboration between experimental and theoretical scientists who worked with long and homogeneous DNA molecules at minus 195 degrees Celsius, using a scanning tunneling microscope (STM) to measure the current that passes across a molecule deposited on a gold substrate. Then, by means of theoretical calculations based on the solution of quantum equations, the electronic structure of DNA corresponding to the measured current has been obtained. These results also suggest an identification of the parts of the double helix that contribute to the charge flow along the molecule.

For further information:
Jerry Barach,
Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu,
Hebrew University spokesperson,
Tel: 054-8820016.

Jerry Barach | The Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: DNA Electronic structure

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>