Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic breakthrough supercharges immunity to flu and other viruses

14.02.2008
McGill researchers discover way to boost cells' natural anti-virus defenses

Researchers at McGill University have discovered a way to boost an organism¡¯s natural anti-virus defences, effectively making its cells immune to influenza and other viruses.

The research was conducted by post-doctoral fellows Dr. Rodney Colina and Dr. Mauro Costa-Mattioli, working in collaboration with Dr. Nahum Sonenberg, a Howard Hughes Medical Institute International Scholar at McGill. They worked with colleagues at l'Institut de Recherches Cliniques de Montr¨¦al (IRCM) and the Ottawa Health Research Institute (OHRI). Their results are to be published February 13 in the journal Nature.

Their process ¨C which could lead to the development of new anti-viral therapies in humans ¨C involved knocking out two genes in mice that repress production of the protein interferon, the cell¡¯s first line of defence against viruses. Without these repressor genes, the mouse cells produced much higher levels of interferon, which effectively blocked viruses from reproducing. The researchers tested the process on influenza virus, encephalomyocarditis virus, vesicular stomatitis virus and Sindbis virus.

... more about:
»Interferon »Researchers »flu »genes

¡°People have been worried for years about potential new viral pandemics, such as avian influenzas,¡± Dr. Sonenberg said. ¡°If we might now have the means to develop a new therapy to fight flu, the potential is huge.¡±

Viruses are sub-microscopic infectious agents which can reproduce only by hijacking a cell¡¯s reproductive machinery, a process that usually leads to disease and even the death of the host organism. Interferon, in particular the type 1 interferons (IFN-¦Á and IFN-¦Â) suppress virus propagation. Production of type 1 interferon is controlled by the interferon regulatory protein 7 (Irf7), which researchers believe to be the ¡°master-regulator¡± of interferon production in the body. The McGill researchers found that protein synthesis of Irf7 is controlled by the repressor genes called 4E-BP1 and 4E-BP2.

¡°In a sense, it¡¯s quite a simple story,¡± Dr. Costa-Mattioli explained. ¡°When you get rid of the repressors, you have more of the key protein Irf7 present, which induces an anti-viral state in the cell. You¡¯re basically removing the brakes.¡±

The researchers detected no abnormalities or negative side-effects resulting from enhanced interferon production in the mice, Dr. Costa-Mattioli said. Dr. Sonenberg explained that the process of knocking out genes is not possible in humans, but the researchers are optimistic new pharmaceutical therapies will evolve from their research.

¡°If we are able to target 4E-BP1 and 4E-BP2 with drugs, we will have a molecule that can protect you from viral infection. That¡¯s a very exciting idea.¡± Dr. Costa-Mattiolo said. ¡°We don't have that yet, but it¡¯s the obvious next step.¡±

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

Further reports about: Interferon Researchers flu genes

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>