Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Tricky Tumor Virus: Epstein-Barr virus reprograms the biological properties of a signal protein of its host cells

18.01.2008
Viruses use many tricks to gain control over their host cells and to reprogram them to their own advantage. Dr. Arnd Kieser and his colleagues of the Department of Gene Vectors of the Helmholtz Zentrum München, Germany, were able to show in a recent publication in PloS Biology by which mechanism Epstein-Barr virus exploits a signal protein of its host cell, which normally mediates programmed cell death (apoptosis), in order to convert the cell into a cancer cell.

Epstein-Barr virus (EBV) is a human-pathogenic virus which belongs to the herpes virus family. Almost every adult carries EBV inside. With an infestation rate of more than 90 %, EBV is one of the most successful human viruses. Its viral genome consists of double-stranded DNA, and it is one of the few known viruses which cause cancer in humans under certain circumstances. EBV-associated cancers include lymphomas (cancer of the lymph nodes), nasopharyngeal carcinoma and gastric cancer.

A protein encoded by the virus, the latent membrane protein 1 (LMP1), is required for the uncontrolled proliferation of EBV-infected cells and, thus, the formation of cancer. Arnd Kieser and his team are studying the molecular mode of action of this EBV protein. LMP1 is a membrane-bound oncoprotein that binds certain signal molecules of its host cell and thereby critically contributes to the oncogenic transformation of the cells. One of these signal proteins is the factor TRADD. TRADD stands for TNF-receptor 1-associated death domain protein. The scientists used TRADD knockout cell lines which they had established by removing the TRADD gene from the genome of human B-cells in order to demonstrate that TRADD is an essential factor for LMP1 function. They found that in the absence of TRADD, LMP1 can no longer activate a cellular communication (also called: signal transduction) pathway which is crucial for cell transformation. However, TRADD's normal function within the cell includes the induction of programmed cell death which would be fatal for the virus. In fact, the scientists made the surprising observation that TRADD can no longer induce apoptosis if it is activated by the viral protein LMP1.

How does Epstein-Barr virus manage to switch off the apoptosis function of TRADD? Kieser and his colleagues discovered that the LMP1 protein possesses a unique TRADD binding domain which dictates an unusual TRADD interaction and prevents TRADD from transmitting cell death signals. Thus, LMP1 masks the apoptotic activity of TRADD. This viral TRADD-binding domain consists of the 16 carboxyterminal amino acids of the LMP1 protein and can be transplanted to cellular receptor proteins where it shows the same effects.

... more about:
»EBV »Epstein-Barr »Host »Kieser »LMP1 »TRADD

Hence, Epstein-Barr virus has found a unique molecular way to extinguish an undesired property of a cellular protein in order to adapt this protein to its own needs. This finding might also be the basis for a new therapeutic approach. Arnd Kieser explains: “Since the specific structure of the LMP1-TRADD interaction is most likely restricted to EBV-infected cells, it might serve as a target structure to develop specific inhibitors which interrupt the transforming signal cascade of the LMP1 oncogene.”

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de

Further reports about: EBV Epstein-Barr Host Kieser LMP1 TRADD

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>