Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey malaria widespread in humans and potentially fatal

17.01.2008
A potentially fatal species of malaria is being commonly misdiagnosed as a more benign form of the disease, thereby putting lives at risk, according to research funded by the Wellcome Trust and the University Malaysia Sarawak.

Researchers in Malaysia studied more than 1,000 samples from malaria patients across the country. Using DNA-based technology they found that more than one in four patients in Sarawak, Malaysian Borneo, were infected with Plasmodium knowlesi, a malaria parasite of macaque monkeys, and that the disease was more widespread in Malaysia than previously thought. Infections were most often misdiagnosed as the normally uncomplicated human malaria caused by P. malariae.

Malaria, which kills more than one million people each year, is caused when Plasmodium parasites are passed into the bloodstream from the salivary glands of mosquitoes. Some types, such as P. falciparum, found most commonly in Africa, are more deadly than others. P. malariae, found in tropical and sub-tropical regions across the globe, is often known as "benign malaria" as its symptoms are usually less serious than other types of malaria.

Until recently, P. knowlesi, was thought to infect only monkeys, in particular long-tailed macaques found in the rainforests of South East Asia. Natural infections of man were thought to be rare until human infections were described in one area in Sarawak, Malaysian Borneo. However, in a study published today in the journal Clinical Infectious Diseases, Professors Janet Cox-Singh and Balbir Singh with colleagues at the University Malaysia Sarawak and three State Departments of Health in Malaysia have shown that knowlesi malaria is widespread in Malaysia.

Under the microscope, the early parasite stages of P. knowlesi look very similar to P. falciparum, the most severe form of human malaria, while the later parasite stages are indistinguishable from the more benign P. malariae. Misdiagnosis as P. falciparum is clinically less important as P. falciparum infections are treated with a degree of urgency and P. knowlesi responds to the same treatment. However, misdiagnosis as the more benign slower growing parasite P. malariae is a problem.

P. knowlesi is unprecedented among the malaria parasites of humans and non-human primates as it reproduces every 24 hours, and one of the features of fatal P. knowlesi infections is the high number of infected red blood cells in these patients. Therefore, even a short delay in accurate diagnosis and treatment could lead to the rapid onset of complications, including liver and kidney failure, and death.

Using DNA detection methods, Professor Cox-Singh and colleagues found malaria infection with P. knowlesi to be widely distributed in Malaysian Borneo and mainland Malaysia, sometimes proving fatal. In addition, single human infections have been reported in Thailand and Myanmar.

"I believe that if we look at malaria infections in South East Asia more carefully, we will find that this potentially fatal type of the disease is more widespread than is currently thought," says Professor Cox-Singh. "Given the evident severity of the illness that it causes, I would recommend that doctors treating patients with a laboratory diagnosis of P. malariae remain alert to the possibility that they may be dealing with the potentially more aggressive P. knowlesi. This would be particularly important in patients who have spent time in the forest fringe areas of South East Asia where the non-human primate host exists."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: P. malariae Sarawak benign falciparum fatal knowlesi parasite potentially

More articles from Life Sciences:

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Sex or food? Decision-making in single-cell organisms
17.10.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>