Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey malaria widespread in humans and potentially fatal

17.01.2008
A potentially fatal species of malaria is being commonly misdiagnosed as a more benign form of the disease, thereby putting lives at risk, according to research funded by the Wellcome Trust and the University Malaysia Sarawak.

Researchers in Malaysia studied more than 1,000 samples from malaria patients across the country. Using DNA-based technology they found that more than one in four patients in Sarawak, Malaysian Borneo, were infected with Plasmodium knowlesi, a malaria parasite of macaque monkeys, and that the disease was more widespread in Malaysia than previously thought. Infections were most often misdiagnosed as the normally uncomplicated human malaria caused by P. malariae.

Malaria, which kills more than one million people each year, is caused when Plasmodium parasites are passed into the bloodstream from the salivary glands of mosquitoes. Some types, such as P. falciparum, found most commonly in Africa, are more deadly than others. P. malariae, found in tropical and sub-tropical regions across the globe, is often known as "benign malaria" as its symptoms are usually less serious than other types of malaria.

Until recently, P. knowlesi, was thought to infect only monkeys, in particular long-tailed macaques found in the rainforests of South East Asia. Natural infections of man were thought to be rare until human infections were described in one area in Sarawak, Malaysian Borneo. However, in a study published today in the journal Clinical Infectious Diseases, Professors Janet Cox-Singh and Balbir Singh with colleagues at the University Malaysia Sarawak and three State Departments of Health in Malaysia have shown that knowlesi malaria is widespread in Malaysia.

Under the microscope, the early parasite stages of P. knowlesi look very similar to P. falciparum, the most severe form of human malaria, while the later parasite stages are indistinguishable from the more benign P. malariae. Misdiagnosis as P. falciparum is clinically less important as P. falciparum infections are treated with a degree of urgency and P. knowlesi responds to the same treatment. However, misdiagnosis as the more benign slower growing parasite P. malariae is a problem.

P. knowlesi is unprecedented among the malaria parasites of humans and non-human primates as it reproduces every 24 hours, and one of the features of fatal P. knowlesi infections is the high number of infected red blood cells in these patients. Therefore, even a short delay in accurate diagnosis and treatment could lead to the rapid onset of complications, including liver and kidney failure, and death.

Using DNA detection methods, Professor Cox-Singh and colleagues found malaria infection with P. knowlesi to be widely distributed in Malaysian Borneo and mainland Malaysia, sometimes proving fatal. In addition, single human infections have been reported in Thailand and Myanmar.

"I believe that if we look at malaria infections in South East Asia more carefully, we will find that this potentially fatal type of the disease is more widespread than is currently thought," says Professor Cox-Singh. "Given the evident severity of the illness that it causes, I would recommend that doctors treating patients with a laboratory diagnosis of P. malariae remain alert to the possibility that they may be dealing with the potentially more aggressive P. knowlesi. This would be particularly important in patients who have spent time in the forest fringe areas of South East Asia where the non-human primate host exists."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: P. malariae Sarawak benign falciparum fatal knowlesi parasite potentially

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>