Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey malaria widespread in humans and potentially fatal

17.01.2008
A potentially fatal species of malaria is being commonly misdiagnosed as a more benign form of the disease, thereby putting lives at risk, according to research funded by the Wellcome Trust and the University Malaysia Sarawak.

Researchers in Malaysia studied more than 1,000 samples from malaria patients across the country. Using DNA-based technology they found that more than one in four patients in Sarawak, Malaysian Borneo, were infected with Plasmodium knowlesi, a malaria parasite of macaque monkeys, and that the disease was more widespread in Malaysia than previously thought. Infections were most often misdiagnosed as the normally uncomplicated human malaria caused by P. malariae.

Malaria, which kills more than one million people each year, is caused when Plasmodium parasites are passed into the bloodstream from the salivary glands of mosquitoes. Some types, such as P. falciparum, found most commonly in Africa, are more deadly than others. P. malariae, found in tropical and sub-tropical regions across the globe, is often known as "benign malaria" as its symptoms are usually less serious than other types of malaria.

Until recently, P. knowlesi, was thought to infect only monkeys, in particular long-tailed macaques found in the rainforests of South East Asia. Natural infections of man were thought to be rare until human infections were described in one area in Sarawak, Malaysian Borneo. However, in a study published today in the journal Clinical Infectious Diseases, Professors Janet Cox-Singh and Balbir Singh with colleagues at the University Malaysia Sarawak and three State Departments of Health in Malaysia have shown that knowlesi malaria is widespread in Malaysia.

Under the microscope, the early parasite stages of P. knowlesi look very similar to P. falciparum, the most severe form of human malaria, while the later parasite stages are indistinguishable from the more benign P. malariae. Misdiagnosis as P. falciparum is clinically less important as P. falciparum infections are treated with a degree of urgency and P. knowlesi responds to the same treatment. However, misdiagnosis as the more benign slower growing parasite P. malariae is a problem.

P. knowlesi is unprecedented among the malaria parasites of humans and non-human primates as it reproduces every 24 hours, and one of the features of fatal P. knowlesi infections is the high number of infected red blood cells in these patients. Therefore, even a short delay in accurate diagnosis and treatment could lead to the rapid onset of complications, including liver and kidney failure, and death.

Using DNA detection methods, Professor Cox-Singh and colleagues found malaria infection with P. knowlesi to be widely distributed in Malaysian Borneo and mainland Malaysia, sometimes proving fatal. In addition, single human infections have been reported in Thailand and Myanmar.

"I believe that if we look at malaria infections in South East Asia more carefully, we will find that this potentially fatal type of the disease is more widespread than is currently thought," says Professor Cox-Singh. "Given the evident severity of the illness that it causes, I would recommend that doctors treating patients with a laboratory diagnosis of P. malariae remain alert to the possibility that they may be dealing with the potentially more aggressive P. knowlesi. This would be particularly important in patients who have spent time in the forest fringe areas of South East Asia where the non-human primate host exists."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

Further reports about: P. malariae Sarawak benign falciparum fatal knowlesi parasite potentially

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>