Identification of a novel neural stem cell type

In culture, neural stem cells (NSCs) can readily differentiate into neuronal and glial subtypes, but their ability to differentiate into region-specific neuronal cell types is limited. Dr. Studer and colleagues isolated and cloned a population of neural rosette cells (R-NSCs), which have an expanded neuronal subtype differentiation potential.

Dr. Studer and colleagues demonstrate that R-NSCs can differentiate along both the CNS and PNS lineages, and are capable of in vivo engraftment. Furthermore, the researchers identified biomarkers unique to the R-NSC type, as well as signaling pathways required for the maintenance of the R-NSC type.

“Our data suggest that R-NSCs may represent the first neural cell type capable of recreating the full cellular diversity of the mammalian nervous system. As such, R-NSCs should have a major impact for applications in regenerative medicine and have the potential to become the “embryonic stem cell equivalent” of the nervous system,” explains Dr. Studer.

Media Contact

Heather Cosel EurekAlert!

More Information:

http://www.cshl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors