Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snoozing worms help Penn researchers explain the evolution of sleep

14.01.2008
The roundworm C. elegans, a staple of laboratory research, may be key in unlocking one of the central biological mysteries: why we sleep.

Researchers at the University of Pennsylvania School of Medicine report in this week’s advanced online edition of Nature that the round worm has a sleep-like state, joining most of the animal kingdom in displaying this physiology. This research has implications for explaining the evolution and purpose of sleep and sleep-like states in animals.

In addition, genetic work associated with the study provides new prospects for the use of C. elegans to identify sleep-regulatory genes and drug targets for sleep disorders.

First author David M. Raizen, MD, PhD, Assistant Professor of Neurology, in collaboration with other researchers at the Penn Center for Sleep, showed that there is a period of behavioral quiescence during the worm’s development called lethargus that has sleep-like properties. “Just as humans are less responsive during sleep, so is the worm during lethargus,” explains Raizen. “And, just as humans fall asleep faster and sleep deeper following sleep deprivation, so does the worm.”

... more about:
»Raizen »elegans »lethargus »nervous system »synaptic

By demonstrating that worms sleep, Raizen and colleagues have not only demonstrated the ubiquity of sleep in nature, but also propose a compelling hypothesis for the purpose for sleep.

Because the time of lethargus coincides with a time in the round worms’ life cycle when synaptic changes occur in the nervous system, they propose that sleep is a state required for nervous system plasticity. In other words, in order for the nervous system to grow and change, there must be down time of active behavior. Other researchers at Penn have shown that, in mammals, synaptic changes occur during sleep and that deprivation of sleep results in a disruption of these synaptic changes.

In addition, the research team used C. elegans as a model system to identify a gene that regulates sleep. This gene, which encodes a protein kinase and is regulated by a small molecule called cyclic GMP, has been previously studied but not suspected to play a role in sleep regulation. The findings suggest a potential role for this gene in regulating human sleep and may provide an avenue for developing new drugs for sleep disorders.

“It opens up an entire new line of inquiry into the functions of sleep,” notes Penn Center for Sleep Director and co-author Allan I. Pack, MB, Chb, PhD.

Karen Kreeger | EurekAlert!
Further information:
http://www.pennhelath.com/news

Further reports about: Raizen elegans lethargus nervous system synaptic

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Control 2019: Fraunhofer IPT presents high-speed microscope with intuitive gesture control

24.04.2019 | Trade Fair News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>