Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life savers in the gut

09.01.2008
Proteins that regulate iron metabolism serve critical functions in nutrient and water absorption in the gut

Researchers from the European Molecular Biology Laboratory (EMBL) have discovered that proteins that regulate the body’s iron household play a vital role in making sure enough nutrients and water are absorbed in the intestine. Mice lacking these proteins suffer from weight loss and dehydration, the scientists report in the current issue of Cell Metabolism.

Iron is a central component of red blood cells and has many other important functions throughout the body. Since too little or too much iron is dangerous for our health a range of regulatory proteins tightly controls iron metabolism. EMBL scientists now assessed the role of two of these proteins, iron regulatory proteins 1 and 2 (IRPs), for the first time in living mice and found that their effects are much broader than previously assumed.

“We generated the first living organism lacking both IRPs in one of its organs,” says Bruno Galy, who carried out the research in the lab of Matthias Hentze at EMBL. “This was extremely challenging, because if both proteins are switched off throughout the whole body, the mouse dies before birth. But if you switch off only one IRP, the one that is still intact substitutes and you can hardly see any effects.”

... more about:
»Absorption »IRP »intestinal

Surprisingly, the lack of IRPs in the intestine did not upset the mice’s iron household in blood and tissues. Instead the mice suffered from other, unexpected problems: they weighed only half of their normal littermates, suffered from severe dehydration and died only 4 weeks after birth. The general nutrient and water absorption in the gut was impaired. A closer look at the intestinal tissues revealed that their structure and organisation were completely disturbed, which likely affects all absorption processes that happen in intestinal cells. The findings show that IRPs are essential for intestinal function and the survival of an organism, but the details of how they accomplish their effects is unclear.

Although the global iron household was unaffected by the lack of intestinal IRPs, the scientists observed changes in the local handling of iron in the gut. IRPs control the abundance of iron transporters in the membrane of intestinal cells. Without the IRPs less iron importers are found in the membrane facing the gut, but iron exporters on the interface with the blood stream are increased. The results are less iron absorption, but more export of the metal into the bloodstream. In the short term this will keep the global iron content stable while depleting the iron stores of intestinal cells, which could be the reason for their disturbed structure and tissue organisation.

“Since IRPs were discovered 20 years ago we have not been able to pin down what exactly they are doing,” says Matthias Hentze, Associate Director and group leader at EMBL. “The new insights provided by our mouse model greatly advance our understanding of their function in iron metabolism and reveal that IRPs play a vital role for the survival of an organism.”

The findings might help inform the development of strategies to control iron absorption in the intestine, which might pave the way for alternative therapeutic approaches to treat iron overload disorders such as hemochromatosis.

Published in Cell Metabolism on 8 January 2008.

Lena Raditsch | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2008/08jan08/
http://www.embl.org

Further reports about: Absorption IRP intestinal

More articles from Life Sciences:

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

nachricht Researchers reveal mechanisms for regulating temperature sensitivity of soil organic matter decompos
15.07.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>