Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life savers in the gut

09.01.2008
Proteins that regulate iron metabolism serve critical functions in nutrient and water absorption in the gut

Researchers from the European Molecular Biology Laboratory (EMBL) have discovered that proteins that regulate the body’s iron household play a vital role in making sure enough nutrients and water are absorbed in the intestine. Mice lacking these proteins suffer from weight loss and dehydration, the scientists report in the current issue of Cell Metabolism.

Iron is a central component of red blood cells and has many other important functions throughout the body. Since too little or too much iron is dangerous for our health a range of regulatory proteins tightly controls iron metabolism. EMBL scientists now assessed the role of two of these proteins, iron regulatory proteins 1 and 2 (IRPs), for the first time in living mice and found that their effects are much broader than previously assumed.

“We generated the first living organism lacking both IRPs in one of its organs,” says Bruno Galy, who carried out the research in the lab of Matthias Hentze at EMBL. “This was extremely challenging, because if both proteins are switched off throughout the whole body, the mouse dies before birth. But if you switch off only one IRP, the one that is still intact substitutes and you can hardly see any effects.”

... more about:
»Absorption »IRP »intestinal

Surprisingly, the lack of IRPs in the intestine did not upset the mice’s iron household in blood and tissues. Instead the mice suffered from other, unexpected problems: they weighed only half of their normal littermates, suffered from severe dehydration and died only 4 weeks after birth. The general nutrient and water absorption in the gut was impaired. A closer look at the intestinal tissues revealed that their structure and organisation were completely disturbed, which likely affects all absorption processes that happen in intestinal cells. The findings show that IRPs are essential for intestinal function and the survival of an organism, but the details of how they accomplish their effects is unclear.

Although the global iron household was unaffected by the lack of intestinal IRPs, the scientists observed changes in the local handling of iron in the gut. IRPs control the abundance of iron transporters in the membrane of intestinal cells. Without the IRPs less iron importers are found in the membrane facing the gut, but iron exporters on the interface with the blood stream are increased. The results are less iron absorption, but more export of the metal into the bloodstream. In the short term this will keep the global iron content stable while depleting the iron stores of intestinal cells, which could be the reason for their disturbed structure and tissue organisation.

“Since IRPs were discovered 20 years ago we have not been able to pin down what exactly they are doing,” says Matthias Hentze, Associate Director and group leader at EMBL. “The new insights provided by our mouse model greatly advance our understanding of their function in iron metabolism and reveal that IRPs play a vital role for the survival of an organism.”

The findings might help inform the development of strategies to control iron absorption in the intestine, which might pave the way for alternative therapeutic approaches to treat iron overload disorders such as hemochromatosis.

Published in Cell Metabolism on 8 January 2008.

Lena Raditsch | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2008/08jan08/
http://www.embl.org

Further reports about: Absorption IRP intestinal

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

With Mars methane mystery unsolved, curiosity serves scientists a new one: Oxygen

13.11.2019 | Physics and Astronomy

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>