Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reading between the genes

03.06.2016

Our genes decide about many things in our lives – what we look like, which talents we have, or what kind of diseases we develop. For a long time dismissed as “junk DNA”, we now know that also the regions between the genes fulfil vital functions. They contain a complex control machinery with thousands of molecular switches that regulate the activity of our genes. Until now, however, regulatory DNA regions have been hard to find. Scientists around Patrick Cramer at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen and Julien Gagneur at the Technical University of Munich (TUM) have now developed a method to find regulatory DNA regions which are active and controlling genes.

The genes in our DNA contain detailed assembly instructions for proteins, the “workers” carrying out and controlling virtually all processes in our cells. To ensure that each protein fulfils its tasks at the right time in the right place of our body, the activity of the corresponding gene has to be tightly controlled.


In contrast to older methods, TT-Seq (dark blue) allows scientists to gain a very consistent picture of all RNA molecules in the cell.

Margaux Michel, Patrick Cramer / Max Planck Institute for Biophysical Chemistry

This function is taken over by regulatory DNA regions between the genes, which act as a complex control machinery. “Regulatory DNA regions are essential for development in humans, tissue preservation, and the immune response, among others,” explains Patrick Cramer, head of the Department for Molecular Biology at the MPI for Biophysical Chemistry. “Furthermore, they play an important role in various diseases. For example, patients suffering from cancer or cardiovascular conditions show many mutations in exactly those DNA regions,” the biochemist says.

When regulatory DNA regions are active, they are first copied into RNA. “The resulting RNA molecules have a great disadvantage for us researchers though: The cell rapidly degrades them, thus they were hard to find until now,” reports Julien Gagneur, who recently moved with this group from the Gene Center of the Ludwig-Maximilians-Universität Munich to the TUM. “But exactly those short-lived RNA molecules often act as vital molecular switches that specifically activate genes needed in a certain place of our body. Without these molecular switches, our genes would not be functional.”

An anchor for short-lived molecular switches

Björn Schwalb and Margaux Michel, members of Cramer’s team, as well as Benedikt Zacher, scientist in Gagneur’s group, have now succeeded in developing a highly sensitive method to catch and identify even very short-lived RNA molecules – the so-called TT-Seq (transient transcriptome sequencing) method. The results are reported in the latest issue of the renowned scientific journal Science on June 3rd.

In order to catch the RNA molecules, the three junior researchers used a trick: They supplied cells with a molecule acting as a kind of anchor for a couple of minutes. The cells subsequently incorporated the anchor into each RNA they made during the course of the experiment. With the help of the anchor, the scientists were eventually able to fish the short-lived RNA molecules out of the cell and examine them.

“The RNA molecules we caught with the TT-Seq method provide a snapshot of all DNA regions that were active in the cell at a certain time – the genes as well as the regulatory regions between genes that were so hard to find until now,” Cramer explains. “With TT-Seq we now have a suitable tool to learn more about how genes are controlled in different cell types and how gene regulatory programs work,” Gagneur adds.

In many cases, researchers have a pretty good idea which genes play a role in a certain disease, but do not know which molecular switches are involved. The scientists around Cramer and Gagneur are hoping to be able to use the new method to uncover key mechanisms that play a role during the emergence or course of a disease. In a next step they want to apply their technique to blood cells to better understand the progress of a HIV infection in patients suffering from AIDS.

Original publication
Björn Schwalb, Margaux Michel, Benedikt Zacher, Katja Frühauf, Carina Demel, Achim Tresch, Julien Gagneur, Patrick Cramer: TT-Seq maps the human transient transcriptome.
Science 352,1225-1228 (2016), doi: 10.1126/science.aad9841.

Contact
Prof. Dr. Patrick Cramer, Department of Molecular Biology
Max Planck Institute for Biophysical Chemistry, Göttingen
Phone: +49 551 201-2800
E-mail: patrick.cramer@mpibpc.mpg.de

Prof. Dr. Julien Gagneur, Computational Biology Group
Technical University of Munich
Phone: +49 89 289-19411
E-mail: gagneur@in.tum.de

Dr. Anne Morbach, Public Relations Office
Max Planck Institute for Biophysical Chemistry, Göttingen
Phone: +49 551 201-1308
E-mail: anne.morbach@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15377790/pr_1620 – original press release
http://www.mpibpc.mpg.de/cramer – Website of the Department of Molecular Biology at the Max Planck Institute for Biophysical Chemistry, Göttingen
http://www.gagneurlab.in.tum.de – Website of the Computational Biology Group at the Technical University of Munich

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

More articles from Life Sciences:

nachricht Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system
20.09.2019 | Technische Universität München

nachricht Moderately Common Plants Show Highest Relative Losses
20.09.2019 | Universität Rostock

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>