Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The proteins ensuring genome protection

13.02.2012
Researchers from the University of Geneva, Switzerland, discover how enzymatic onslaughts at the ends of our chromosomes are countered

Researchers from the University of Geneva (UNIGE), Switzerland, have discovered the crucial role of two proteins in developing a cell 'anti-enzyme shield'. This protection system, which operates at the level of molecular 'caps' named telomeres, prevents cells from treating chromosome ends like accidental DNA breaks and 'repairing' them.

Joining chromosome ends would, indeed, lead to tumor formation. This study, carried out by Cyril Ribeyre and led by David Shore, professor of molecular biology, is published in the revue Nature Structural & Molecular Biology.

Each of our cells contains two huge DNA strands, segmented into parts that are packaged within chromosomes. Each chromosome end, however, becomes vulnerable to specific enzymes that target accidental DNA breaks in need of repair. The cell is, indeed, equipped with a sensitive surveillance system that recognizes and corrects abnormalities occurring within our genome. This system includes patrolling proteins, molecules that set off an alarm, as well as damage-repairing enzymes.

In order to escape the cellular mechanisms that detect and repair damaged DNA, the ends of our chromosomes are covered by molecular 'caps' called telomeres. These complexes, formed of proteins and repetitive DNA, constitute an 'anti-enzyme shield' that protects chromosome ends. Inadvertent end joining would indeed lead to chromosome breakage and rearrangement during cell division, processes that are known to drive tumor formation.

Restraining the zeal of repair enzymes

Cyril Ribeyre and David Shore, from the Department of Molecular biology of the UNIGE, have discovered that Rif1 and Rif2, two related proteins that bind telomeres, deactivate the alarm of the DNA repair surveillance system. 'Telomeres interact with many molecules. We had identified several biochemical players, but we didn't know how they functioned', says Professor Shore, member of the National Center of Competence in Research Frontiers in Genetics. 'We have now established that Rif1 and Rif2 prevent the binding of specific proteins involved in setting off this alarm, which inhibits an enzymatic cascade at an early stage in the process'.

This local 'anti-enzyme shield' seems to extend to neighboring regions. 'Telomeres of adjacent chromosomes probably benefit from this protective system, in case they undergo severe damage', suggests Professor Shore.

These two related molecules had already been analyzed and part of their functions uncovered by the researcher's team. 'We knew that Rif1 and Rif2 were involved in regulating telomere length, which determines the life span of the cell. Both of them were also suspected to take part in the telomeric cap formation', details Cyril Ribeyre.

The multiple activities of Rif1 and Rif2 thus contribute to ensure the optimal functioning of telomeres with respect to their roles –all essential- within the cell.

David Shore | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>