Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein love triangle key to crowning bees queens?

10.11.2011
A honey bee becomes a royal queen or a common worker as a result of the food she receives as a larva.

While it has been well established that royal jelly is the diet that makes bees queens, the molecular path from food to queen is still in dispute. However, scientists at Arizona State University, led by Adam Dolezal and Gro Amdam, have helped reconcile some of the conflicts about bee development and the role of insulin pathways and partner proteins. Their article "IIS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee cast fate" has been published in the December issue of the Journal of Experimental Biology.


A worker bee (left) and queen bee (right) show the vast differences in development that can occur based upon the food a bee receives during its larval stages. These bees were raised in the laboratory of Gro Amdam at Arizona State Univeristy. Housed in plastic dishes, rather than a bee colony, allowed complete control of their diet, and offered researchers the ability to manipulate their gene expression levels and better identify developmental routes. Credit: Christofer Bang

Central to the dispute within the scientific community about "who would be queen" has been a ground-breaking study published in the journal Nature by Japanese scientist Masaki Kamakura in 2011. He found that a single protein in royal jelly, called royalactin, activated queen development in larval bees through interaction with an epidermal growth factor receptor (EGFR). Kamakura's work suggested that insulin signals do not play a role in queen development, despite previous studies suggesting otherwise, including work pioneered with the insulin receptor protein by Amdam's group.

Undeterred by Kamakura's findings, Dolezal, a doctoral student, and Amdam, a Pew Biomedical Scholar and professor in ASU's School of Life Sciences, looked for ways to resolve the disparity between the research studies. Amdam's team's first step involved taking control of the insulin receptor's partner protein, IRS, which the insulin receptor relies upon for signaling. The scientists found that by blocking IRS, they caused a central developmental hormone to crash, which forced larval bees into the worker mold despite their diet of royal jelly. Amdam's team then "rescued" the now worker-destined bees. They found that by giving the bees hormone treatments, the bees could then develop along the queen trajectory.

However, while Dolezal and Amdam's studies showed that they could block queen development, and then rescue it, and clarified the role of IRS in the queen-making process, their work could not resolve the remaining conflict with Kamakura's results.

Taking a new tack, the Amdam group, which also included Navdeep Mutti, Florian Wolschin, and Jasdeep Mutti, and Washington State University scientist Kulvinder Gill, turned to mathematical modeling, combining their results with approaches that analyze potential partner interactions. These models, developed to understand and clarify complex relationships in physics and biology, allowed the ASU researchers to build a model of consensus – explaining how the IRS partner protein could partner to both epidermal growth factor receptor and the insulin receptor. And while the insulin receptor itself may play no role – as Kamakura's findings suggest – Dolezal and Amdam's findings show that the IRS partner protein may in fact be key to a molecular love triangle, interacting with both receptors, and with the bond to epidermal growth factor receptor being the crowning feature in queen development.

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>