Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein identified that can result in fragile bones

28.07.2010
Too little of a protein called neogenin results in a smaller skeleton during development and sets the stage for a more fragile bone framework lifelong, Medical College of Georgia researchers report.

A developing mouse with neogenin deficits has poorly defined digits and is generally smaller, including having small growth plates, an indicator of future development, said Dr. Wen-Cheng Xiong, developmental neurobiologist in the MCG Schools of Medicine and Graduate Studies and corresponding author of the study published in Developmental Cell. Dr. Zheng Zhou, MCG assistant research scientist, is first author.

Their findings provide new insight into skeletal development as they point toward a potential new direction for treating osteoarthritis, a common, painful and debilitating condition where cartilage between bones is lost, Xiong said.

Neogenin doesn't make bone; rather, it forms a protein complex essential to turning on cartilage-producing genes, the researchers found. "Each cell type has a master gene. Neogenin is not that, it's more of a modulator," Xiong said. That's why, if it's mutated, like in the mouse, cartilage and bone formation is disrupted – not halted. It's also why neogenin could be a good therapeutic target for turning the tide on cartilage or bone loss that occurs in osteoarthritis, Xiong said.

Skeletal development occurs early, which is why pregnant women need so much calcium. Initially the skeleton consists of soft bone or cartilage, which attracts blood vessels as well as the osteoblasts that replace most cartilage with hard bone over time. After birth, growth plates, where hard and soft bone meet, enable bones to lengthen and children to grow. After puberty, growth plates go away and bone hardens except for cartilage at the joints that eases movement and provides cushion. While bone cells continue to turn over, bone growth and loss should balance each other out after puberty due to osteoclasts – cells that break down and resorb bone. Diseases such as osteoporosis and osteoarthritis occur when osteoclasts start winning. Nutrition, inflammation and hormones are among the many factors that impact bone's status.

Neogenin, which Xiong has shown helps direct neurons during brain development and aid in regulation of iron levels, is found throughout bone and cartilage and numerous other tissues. Its pervasiveness reflects its many functions, depending on the stage of life and location, she noted.

Xiong suspects the protein has multiple roles in adulthood as well, albeit slightly different ones. In adulthood, neogenin may become more of an overseer, keeping tabs on functions it influences, such as bone formation. It resumes an instigator role when something goes amiss.

"Every function in the body needs to be able to go up or down," Xiong said, noting that neogenin pathways are likely altered in disease. "I think in the disease condition this molecule could be changed. The pathways are altered, not eliminated, rather increased or decreased abnormally."

Treating problems such as osteoporosis, iron overload and anemia, would require drugs that could keep protein levels high. Meanwhile, she wants to confirm neogenin's influence on cartilage function in adulthood. "In late-stage arthritis, the cartilage function may be completely disrupted but early in the disease process, maybe there is a window for stimulating this protein."

The research, funded by the National Institutes of Health, is also featured in a preview in Developmental Cell titled, "A Skeleton in the Closet: Neogenin Guides Bone Development."

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>