Protein in the envelope enclosing the cell nucleus – a new piece of the puzzle in research on cancer and stem cells?

All living organisms are made up of cells. The cell consists of different “compartments” that have different functions. In one of the compartments, the cell nucleus, there is genetic information about how the organism's proteins should look like, and when they should be produced.

The cell nucleus is enclosed by a double lipid membrane that is called the nuclear envelope. All transports in and out of the nucleus take place through pores in the nuclear envelope. It is estimated that there are some 100 different proteins in the nuclear envelope, but today scientists do not yet know precisely how they function.

The protein that the Södertörn researchers have now discovered, called Samp1, normally exists in the membrane envelope that surrounds the cell nucleus. During cell division it turned out that it was part of the process that distributes the chromosomes evenly between the daughter cells, the so-called “mitotic spindle”. The protein was therefore named Samp1 (Spindle associated membrane protein 1).

“This discovery was unexpected, since it was previously not believed that integral proteins that are embedded in membranes could be in the mitotic spindle. Nor was it previously understood what functions such proteins would have there,” says Professor Hallberg.

The distribution of chromosomes during cell division is extremely rigidly regulated, and the slightest error can lead to the development of tumors. Samp1 will now be a key piece of the puzzle to study in cancer research.

“An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells”, (Journal of Cell Science 122, 2100-2107), was part of a doctoral thesis at the Karolinska Institutet that was defended at Södertörn University by Dr. Charlotta Buch on February 20 this year.

Einar Hallberg's research team discovered in their study that the Samp1 protein has connections to the cell skeleton outside the cell nucleus. This takes place between cell divisions, when the protein is in the inner membrane of the cell nucleus. It is possible that Samp1 may play an important role when mechanical signals from the outside of the cell are transmitted to the genes in the cell nucleus. Professor Hallberg's research group is now focusing on investigating what role Samp1 might have in the transmission of mechanical signals from the outside of the cell to the genes.

Recently mechanical signaling has been shown to be extremely important in how the body's cells are organized to form various organs. For instance, cultured stem cells develop into nerve cells, muscle cells, or bone cells depending on the stiffness of the material they grow on. Increased knowledge about mechanical signaling is of great importance to stem cell research and future regenerative medicine.

Contact: Professor Einar Hallberg, e-mail:einar.hallberg@sh.se,
phone: +46 (0)8-608 47 33
Pressofficer Mari Gerdin: mari.gerdin@sh.se; +46-76 785 41 41

Media Contact

Mari Gerdin idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors