Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein complex for hepatitis C-virusentry in liver cells is characterised

24.07.2018

Hepatitis C virus chronically infects 70 million individuals worldwide. Although the infection can be cured with antiviral drugs, this therapy does not protect from a second infection with the same virus. Moreover, the liver damage cannot always be reversed by treatment of hepatitis C. The team “Viral Interaction Proteomics” led by Gisa Gerold at the Institute for Experimental Virology at TWINCORE used a new sensitive analytical method to identify proteins in the membrane of liver cells, which mediate entry of hepatitis C virus. These results were recently published in PLOS Pathogens.

The receptors, which viruses –and other extracellular moieties- use to enter cells, are often part of large complexes composed of many proteins. In the case of hepatitis C virus a critical receptor is CD81. It is part of a complex -the tetraspanin web-, which is embedded in the liver cell membrane.


Dr. Gisa Gerold

TWINCORE

The complex binds the virus on the surface of liver cells. Its composition was now elucidated by the team of Gisa Gerold. Moreover, she and her co-workers could show how the virus is high jacking the complex to gain access into liver cells.

“The protein complex deserves the name ‘complex’ as it comprises a fairly large number of proteins. It furthermore engages additional cytosolic proteins.”, says Gisa Gerold. “To understand, how virus entry works, it is not enough to look at CD81 in an isolated manner. We need to take into account, which other molecules are engaged by CD81.”

And exactly that is what the method of the biochemist can do.The work revealed that the CD81 complex in liver cells consists of more than 33 proteins. Using quantitative mass spectrometry – a method, which elucidates the nature of proteins in the complex and their relative abundance – she analyzed the molecular environment of the hepatitis C virus entry receptor CD81.

For 30 of the 33 interacting proteins it was unclear, whether they played a role in hepatitis C virus infection. By testing every single one of the 33 proteins for their role in infection, the researchers found two novel proteins, which are important for virus entry: calpain-5 (CAPN5) and Casitas B-lineage lymphoma proto-oncogene B (CBLB).

„The functional role of CAPN5 and CBLB in hepatitis C virus entry into liver cells was previously unknown. We could thus not only map proteins within the CD81 complex, but also elucidate two novel key components of the complex that contribute to virus infection”, concludes Gisa Gerold.

Wissenschaftliche Ansprechpartner:

Dr. Gisa Gerold, gisa.gerold(at)twincore.de
Tel: +49 (0)511 220027-134

Originalpublikation:

Bruening J, Banse P, Kahl S, Vondran FW, Kaderali L, Marinach C, Silvie O, Pietschmann T, Meissner F*, Gerold G*. (2018) Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB. PLOS Pathogens. * these authors contributed equally

Weitere Informationen:

https://www.twincore.de/en/institutes/experimental-virology/rg-virus-interaction... More about Gisa Gerold's research.

Dr. Jo Schilling | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene
28.01.2020 | Universität Bayreuth

nachricht Unique centromere type discovered in the European dodder
28.01.2020 | Leibniz Institute of Plant Genetics and Crop Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene

28.01.2020 | Life Sciences

Rice lab turns trash into valuable graphene in a flash

28.01.2020 | Materials Sciences

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>