Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new target emerges for autoimmune diseases

01.09.2009
Discovery that chemistry in zone between cells influences immune T-cell activity also has implications for future cancer therapies

University of Michigan scientists say they have uncovered a fundamentally new mechanism that holds in check aggressive immune cells that can attack the body’s own cells. The findings open a new avenue of research for future therapies for conditions ranging from autoimmune diseases to organ transplants to cancer.

The scientists discovered that the immune system’s regulatory T cells, a topic of intense medical research, influence aggressive immune cells by regulating the chemical environment between cells. The results appear online ahead of print in Nature Chemical Biology.

“Now we know that the redox environment outside the cell is a very important dynamic. It regulates cell function,” says U-M biochemistry professor Ruma Banerjee, the study’s senior author and the Vincent Massey Collegiate Professor of Biological Chemistry and associate chair of biological chemistry at the U-M Medical School. Processes known as redox chemistry are fundamental to the way cells derive and consume energy.

Regulatory T cells appear to alter the chemical environment around their aggressive cousins, known as autoreactive T cells, in ways that either suppress them or cause them to proliferate, the study found. It is likely that this mechanism is involved in inflammatory bowel disease (IBD) and ulcerative colitis, Banerjee says.

After examining the process further, Banerjee’s team would like to apply the insights in animal studies. The study results have implications for scientists looking for ways to enlist regulatory T cells to rein in misguided autoreactive T cells, and for other research areas as well. Regulatory T cells also influence the immune response in cancer, pregnancy, organ transplants and infection.

Context

Certain T cells in the immune system which normally attack invaders of the body can cause autoimmune diseases when they react instead against the body’s own cells. These auto reactive T cells are thought to cause multiple sclerosis, Crohn’s disease, rheumatoid arthritis, lupus and other diseases.

In these diseases, researchers want T regulatory cells to restrain excessive action by autoreactive T cells. But to control cancer, researchers would like to partially inhibit T regulatory cells, so that autoreactive T cells will be able to identify and vigorously attack cancer cells.

The U-M scientists found that redox chemistry, an emerging area of interest among scientists, plays a significant role in the way immune cells regulate each other. Redox chemistry plays a role in many diseases. Banerjee believes that the study’s findings should heighten the chances of success in regulating T regulatory cells to curb disease.

“Redox chemistry is a mechanism that is fundamentally important in understanding T regulatory cell actions,” says Zhonghua Yan, the graduate student who is first author of the study.

Research details

By studying live mouse immune cells cultured in lab dishes, the team found that important redox communication occurs between dendritic cells, which are the first immune cells to detect a foreign agent, and autoreactive T cells. The dendritic cells alter the chemical environment outside cells in a way that promotes activation of the T cells. But then T regulatory cells “intervene in the redox chatter” and suppress that effect, says co-author Sanjay Garg, Ph.D., a research investigator in the U-M Department of Biological Chemistry.

What’s next

Banerjee says her team needs to do more work to fully understand the process before they can use their insights to block or encourage T regulatory cell activity in animal studies of IBD or another autoimmune disease.

“We are keen to move this into a disease model,” she says, a step made easier because the pathway by which T regulatory cells appear to affect the redox chemistry outside cells is a well known one.

Additional authors: Jonathan Kipnis, Department of Neuroscience, University of Virginia Citation: 10.1038/ nchembio.212

Funding: National Institutes of Health

Anne Rueter | University of Michigan
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>