Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress Toward a Biological Fuel Cell?

30.12.2008
Metal-reducing bacteria and semiconducting nanominerals aggregate to form electrically conducting networks

Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) coated with a bacterial film. The fuel consists of a substrate that the bacteria can break down.

The electrons released in this process must be transferred to the anode in order to be drawn off as current. But how can the electrons be efficiently conducted from the microbial metabolism that occurs inside a cell to the anode? Discoveries made by Japanese researchers regarding the electron-transfer mechanism of Shewanella loihica PV-4 suggest an intriguing approach. As reported in the journal Angewandte Chemie, in the presence of iron(III) oxide nanoparticles, these metal-reducing bacteria aggregate into an electrically conducting network.

To meet its energy requirements, our bodies metabolize energy-rich substances. A critical step in this process is the transfer of electrons to oxygen, which enters our bodies when we breathe. Instead of breathing, metal-reducing bacteria that live in subterranean sediments transfer electrons to the iron oxide minerals on which they dwell as the last step of their metabolism. In this process, trivalent iron ions are reduced to divalent ions.

A team led by Kazuhito Hashimoto has investigated how this transfer is carried out in Shewanella loihica. They added the cells to a solution containing very finely divided nanoscopic iron(III) oxide particles and poured the solution into a chamber containing electrodes. A layer of bacteria and iron oxide particles was rapidly deposited onto the indium tin oxide electrodes at the bottom of the chamber. When the cells were “fed” lactate, a current was detected. Electrons from the metabolism of the lactate are thus transferred from the bacteria to the electrode.

Scanning electron microscope images show a thick layer of cells and nanoparticles on the electrode; the surfaces of the cells are completely coated with iron oxide particles. The researchers were able to show that the semiconducting properties of the iron oxide nanoparticles, which are linked to each other by the cells, contribute to the surprisingly high current. The cells act as an electrical connection between the individual iron oxide particles. Cytochromes, enzymes in the outer cell membrane of these bacteria, transfer electrons between the cells and the iron oxide particles without having to overcome much of an energy barrier. The result is a conducting network that even allows cells located far from the electrode to participate in the generation of current.

Author: Kazuhito Hashimoto, University of Tokyo (Japan), http://www.light.t.u-tokyo.ac.jp/english/contact-us.htm

Title: Self-Constructed Electrically Conductive Bacterial Networks

Angewandte Chemie International Edition 2009, 48, No. 3, 508–511, doi: 10.1002/anie.200804750

Kazuhito Hashimoto | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.light.t.u-tokyo.ac.jp/english/contact-us.htm

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>