Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing changes to infant milk formulations

23.01.2014
A chip-based detection system for minor functional proteins in infant milk formula could assist quality-control testing

Infant milk formula is a widely accepted alternative to breast milk for babies in their first year of life. Since breast milk contains all the nutrients required by young infants, formula manufacturers aim to closely match their product’s ingredients to those of breast milk.

“Functional proteins in human milk are essential for key biological functions such as immune system development,” explains Ruige Wu from the A*STAR Singapore Institute of Manufacturing Technology. “However, some of these proteins are not found, or are present at lower concentrations, in infant formula products compared to human milk.”

Recently, some manufacturers began advertising that their products contained elevated levels of functional proteins, such as á-lactalbumin and immunoglobulin G. “The ability to measure these functional proteins is very important to control and monitor the quality of infant formula products,” explains Wu. “Supplementation of formula products is expected to be regulated shortly.”

Regulation of these products requires an easy and inexpensive quantitative method to detect low levels of functional proteins in milk, which also contains abundant other proteins. However, Wu explains that existing techniques, based on high-performance liquid chromatography (HPLC), use expensive equipment and time-consuming methods, with pretreatment alone taking several hours. She and her co-workers have now developed a microchip capillary-electrophoresis (CE)-based method that is cheaper, has a shorter assay time and eliminates the need for pretreatment (1).

Wu’s team fabricated a custom-made, microfluidic-chip CE device. The device separates the functional proteins from other, more abundant proteins in the formula using isoelectric focusing. In this process, the proteins move through a gel with a pH gradient, and the point at which they stop on the gel depends on their charge. Since each protein has a slightly different charge, separation occurs. This takes just two minutes.

“The functional proteins are then transferred into the embedded capillary for further separation according to their mass-to-charge ratio,” explains Wu. This capillary zone electrophoresis separation step takes 18 minutes. The team then identified and measured the amount of protein present—while still on the CE column—using ultraviolet detection. “The concentrations of functional proteins are determined from the respective absorbance values and calibration curves,” she says.

The reliability of the device was tested with infant milk formula samples spiked with known amounts of various functional proteins. “Results close to 100 per cent recovery were obtained,” says Wu.

“Our next steps are to collaborate with industry partners in the manufacturing, or quality-control testing, of infant formula or similar protein rich products,” she says.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

Wu, R., Wang, Z., Zhao, W., Yeung, W. S.-B. & Fung, Y. S. Multi-dimension microchip-capillary electrophoresis device for determination of functional proteins in infant milk formula. Journal of Chromatography A 1304, 220–226 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6859
http://www.researchsea.com

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>