Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primate Research: Maternal stress affects offspring growth in complicated ways

28.11.2017

Two opposing processes determine how maternal stress affects offspring growth in different developmental phases

A new comparative analysis across mammals brings order to previously ambiguous results on the effects that maternal stress has on the developing offspring. Different studies (often on the same species) have reported that early adversity enhances, hampers, or has no effect on offspring development and performance.


Mit zunehmender Unabhängigkeit nehmen auch die Effekte von mütterlichem Stress auf den Nachwuchs ab, wenn dieser nur spät in der Schwangerschaft auftrat.

Foto: Kittisak Srithorn


Der Verhaltensforscher Dr. Oliver Schülke arbeitet am Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie der Universität Göttingen.

Foto: Julia Ostner

Researchers from the German Primate Center and Universities of Göttingen and New Mexico have now proposed a hypothesis that largely predicts such highly variable patterns in the growth rates of disadvantaged offspring across 719 studies on 21 mammal species.

“The idea is that prenatal stress affects offspring in two different ways depending on the timing of the stressor during pregnancy – yielding different outcomes before birth, after birth, and after weaning” says Andreas Berghänel, the lead author of the study. The study was published in the journal PNAS.

For example, prenatal maternal stress late in gestation causes mothers to invest less energy in their unborn offspring, which leads to slower intrauterine and early postnatal growth rates. Once offspring have reached nutritional independence, however, they are no longer affected directly by their mother’s provisioning, and consequently grow at the same rate as non-disadvantaged offspring. Thus, maternal stress late in gestation leads to slow growth during dependent phases and unchanged growth later.

By contrast, prenatal maternal stress early in gestation causes the fetus to be entirely reprogrammed to deal with a reduced life expectancy. To “make the best of a bad job”, the early challenged offspring switches to an accelerated pace of life and grows and matures faster than unchallenged offspring to ensure that it reproduces before it dies. Once set on the fast track, the offspring under early prenatal maternal stress remain on this trajectory even after weaning and therefore overshoot the usual body size for age throughout development.

In combination, an infant’s acceleration of their developmental processes together with a deceleration due to reduced maternal investment could then cancel each other out during phases of intense maternal investment (gestation and lactation). It is not until the infant is nutritionally independent that the programming effects become clear. This new comparative study finds all of these predictions are supported in a large sample of studies that each measured the effects of prenatal stress on offspring size and growth compared to an unchallenged control group.

All stressors seem to have the same effect, and the results are stable across a variety of experiments. Whether mothers were exposed directly to stressors (via food restriction or other adversities) or were experimentally manipulated to increase their “stress hormones” (for example, cortisol), the patterns of offspring growth across developmental stage relative to the timing of the stressor remained the same.

Previous evolutionary hypotheses about prenatal maternal stress effects also invoked the idea of fetal programming, but most assumed that any fitness benefits to the offspring were the result of enhanced environmental matching between the mother and offspring rather than an offspring strategy specifically to counteract the deleterious effects of reduced maternal investment.

These new results may bear some translational value for understanding why girls reach menarche earlier in poorer neighborhoods, why teenage pregnancies are more frequent in disadvantaged families, and why adverse conditions during early development (particularly in formula-fed children) often lead to obesity and other metabolic health problems later in life.

Original publication
Berghänel A, Heistermann M, Schülke O, Ostner J (2017): Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals. PNAS 2017

Contact and notes for editors

Dr. Oliver Schülke
Tel.: +49 551 39 399 26
E-Mail: oschuel@gwdg.de

Luzie Almenräder (Kommunikation)
Tel: +49 551 3851-424
E-Mail: LAlmenraeder@dpz.eu

 
The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. In addition, it operates four field stations in the tropics and is a reference and service center for all aspects of primate research. The DPZ is one of the 91 research and infrastructure institutes of the Leibniz Association in Germany.

Weitere Informationen:

Printable pictures and captions are available in our media library: http://medien.dpz.eu/webgate/keyword.html?currentContainerId=4141

This press release with additional information is also to be found on our website: http://www.dpz.eu/de/startseite.html

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: DPZ PNAS Primatenforschung Primatenzentrum gestation maternal stress primate

More articles from Life Sciences:

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Sex or food? Decision-making in single-cell organisms
17.10.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>