Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary cilia formation provides insight into genetic diseases

15.04.2010
Identification of protein targets and genes may be key to possible drug therapies for ciliopathies

A team of scientists at the University of California, San Diego School of Medicine have identified a network of genes that initiate and manage cilia formation. Although scientists have known about cilia for decades, only recently have they discovered their role in disease. This new discovery, which may lead to new therapies for ciliopathies, will appear in the April 15 edition of Nature.

Primary cilia are small, hair-like appendages attached to the surface of human cells. They act like antennae, sensing and evaluating extracellular signals to coordinate the development and stability of a wide variety of organs. Ciliopathies are a newly emerging group of genetic diseases caused by defects in the function or structure of cellular primary cilia. These diseases present symptoms such as mental retardation, retinal blindness, obesity, polycystic kidney disease, liver fibrosis, ataxia and some forms of cancer.

The scientists, led by Joe Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and a Howard Hughes Medical Institute Investigator, and Joon Kim, a UC San Diego postdoctoral fellow, utilized a high-throughput, cell-based screen to evaluate the impact of more than 8,000 genes and their relation to cilia function and development.

"Utilizing high-throughput screening, we were able view a wider array of the genes implicated in ciliopathies and enact systematic approaches, which enabled us to gain deeper insight into the molecular mechanisms of cilia formation," said Gleeson.

Additional investigation revealed that the endocytic recycling pathway, which absorbs and processes plasma membrane, also plays a key role in primary cilia formation. The scientists also identified protein groups that are key modulators between cilia and the endocytic recycling pathway. These findings suggest that there are specific protein targets for the development of ciliopathy therapy, according to Gleeson.

When cytochalasin D, a small molecule which permeates cells and inhibits cytoskeleton polymerization, was applied to one of the identified proteins, it repaired cilium formation in cells carrying mutations.

"While the use of cytochalasin D is not a viable solution in patients because of its toxicity, we now know that pharmacological solutions for ciliopathy exist," said Kim.

The research team intends to continue searching for "cleaner" small molecules, which can be utilized for ciliopathy treatment.

Additional contributors to the study include Ji Eun Lee of UC San Diego, School of Medicine, Department of Neurosciences; Keiichiro Ono, KiYoung Lee, and Trey Ideker of UC San Diego School of Medicine and Bioengineering; Susanne Heynen, Eigo Suyama, and Pedro Aza-Blanc of Sanford-Burnham Institute for Medical Research.

This study was funded in part by the National Institutes of Health, the National Alliance for Research on Schizophrenia and Depression, and the Howard Hughes Medical Institute.

Jamee Lynn Smith | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>