Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Previously unconnected molecular networks conspire to promote cancer

23.12.2011
Inflammatory signaling blocks NUMB’s ability to deaden NOTCH1-driven tumor development

An inflammation-promoting protein triggers deactivation of a tumor-suppressor that usually blocks cancer formation via the NOTCH signaling pathway, a team of researchers led by scientists at The University of Texas MD Anderson Cancer Center reports today in Molecular Cell.

Working in liver cancer cell lines, the team discovered a mechanism by which tumor necrosis factor alpha (TNFá) stimulates tumor formation, said senior author Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. Hung also is MD Anderson's vice president for basic research.

"We've discovered cross-talk between the TNFá inflammation and NOTCH signaling pathways, which had been known to separately promote cancer development and growth," Hung said. Liver cancer is one of several cancers, including pancreatic and breast, associated with inflammation.

Their findings have potential implications for a new class of anti-cancer drugs currently in clinical trials. "Pharmaceutical companies are developing NOTCH inhibitors," Hung said. "TNFá now presents a potential resistance mechanism that activates NOTCH signaling in a non-traditional way."

Pathways also unite in colon, lung, prostate cancers

"In addition, co-activation of these two pathways was also observed in colon, lung and prostate cancers, suggesting that the cross-talk between these two pathways may be more generally relevant," Hung said.

However, TNFá also presents an opportunity to personalize therapy, Hung said. The presence of TNFá or a separate protein that it activates called IKK alpha may serve as useful biomarkers to guide treatment.

"If a patient has only NOTCH activated, then the NOTCH inhibitor alone might work. But if TNFá or IKKá are also activated, then the NOTCH inhibitor alone might not work very well and combination therapy would be warranted," Hung said.

"We'll try this in an animal model and then go to clinical trial if it holds up," Hung said.

A path from inflammation to liver cancer

In a series of experiments, Hung and colleagues connected the following molecular cascade:

TNFá, a proinflammatory cytokine, signals through a cell's membrane, activating IKKá, a protein kinase that regulates other proteins by attaching phosphate groups (one phosphate atom, four oxygen atoms) to them.

IKKá moves into the cell nucleus, where it phosphorylatesFOXA2, a transcription factor that normally fires up the tumor suppressor NUMB.

NUMB usually blocks a protein called NICD, the activated portion of NOTCH1 that slips into the cell nucleus to activate genes that convert the normal cell to a malignant one.

But when FOXA2 is phosphorylated, it does not activate NUMB. With NUMB disabled, NOTCH1 is activated. New understanding, new targets for cancer therapy

In liver cancer (hepatocellular carcinoma) tumors, IKKá, the phosphorylated version of FOXA2 and NOTCH1 are expressed more heavily than in normal liver tissue. Expression of all three is correlated in liver cancer tumors, the team found.

The authors conclude that identifying the link between TNFá and NOTCH1 pathways provides a new starting point for understanding the molecular basis for TNFá-related tumor growth and for identifying new targets for cancer therapy.

Finding ways to inhibit FOXA2 phosphorylation or to activate NUMB would provide new options for treating and perhaps preventing cancer, Hung said.

Co-authors with Hung are first author Mo Liu, Dung-Fang Lee, Chun-Te Chen, Hong-Jen Lee, Chun-Ju Chang, Jung-Mao Hsu, Hsu-Ping Kuo, Weiya Xia, Yongkun Wei, Chao-Kai Chou, and Yi Du, all of MD Anderson's Department of Molecular and Cellular Oncology; Liu also is a graduate student in The University of Texas Graduate School of Biomedical Sciences at Houston, a joint program of MD Anderson and The University of Texas Health Science Center at Houston; Chia-Jui Yen, National Cheng Kung University College of Medicine, Tainan, Taiwan; Long-Yuan Li, Wei-Chao Chang and Pei-Chun Chiu of the Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan; Debanjan Dhar and Michael Karin, Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego; and Chung-Hsuan Chen, The Genomics Research Center, Academica Sinica, Taipei, Taiwan. Wei-Chao Chang also is associated with Academic Sinica.

Funding for this research was provided by the National Cancer Institute, including MD Anderson's Cancer Center Support Grant from the NCI, National Science Council of Taiwan, Taiwan Department of Health; The MD Anderson-China Medical University and Hospital Sister Institution Fund, the Kadoorie Charitable Foundation and a research assistant scholarship to Mo Liu by the University of Texas Graduate School of Biomedical Sciences at Houston.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>