Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal stress accelerates growth and inhibits the motoric development of unborn monkeys

21.09.2016

For the first time, behavioral ecologists studied the impact of maternal stress on primate infants in the wild.

At their field station in Thailand, researchers of the German Primate Center - Leibniz Institute for Primate Research (DPZ) and the University of Göttingen followed non-human primate mothers through their gestation and their infants through the first one and a half years of their lives.


An infant Assamese macaque being nursed in the hill evergreen forest of Thailand. Photo: Andreas Berghänel

Foto: Andreas Berghänel

The offspring of mothers that were stressed from food shortages grew faster than their peers but paid for that with slower motoric development and probably also a weakened immune system. This is the first study on the effects of prenatal stress in long-lived mammals in their natural habitat. The results support the theory that stressed mothers change their unborn’s pace of life (Proceedings of the Royal Society B 20161304).

It is a known fact that maternal stress often has a long-term impact on the unborn child.
Yet, physicians and biologists still discuss as to whether these maternal influences should generally be regarded as pathological or as to whether it is an evolved adaptative mechanism. Are mothers able to program their unborn offspring to increase its evolutionary fitness?

This hypothesis is supported by studies on short-lived mammals such as rats, since the environmental conditions during gestation are very similar to those the offspring will breed in a few month later. The new study suggests that adaptive prenatal stress effects can also occur in long-lived monkeys.

The physiological stress following natural food shortages seemed to have cause accelerated growth among young macaques as evident from the analysis of data on fruit availability in the most important tree species, hormone levels in the feces of mothers and growth curves derived from hundreds of photos of Assamese macaque infants in the hill evergreen forest of northeastern Thailand.

In mammals growth is usually closely related to important developmental milestones. The first author of the study, Andreas Berghänel, explains, "A shortened life expectancy caused by prenatal development disturbances here leads to an accelerated pace of life. The offspring grows faster and reaches sexually maturity quicker allowing for earlier and faster reproduction.”

Even in humans, early life adversities are related to earlier sexual maturity. Nevertheless, Julia Ostner, the head of the field project, is surprised, "The faster pace of life is astounding. We expected that the poor conditions experienced in the womb would have only negative consequences for the young during the gestation period."

And indeed, accelerated growth is only one of the consequences of reduced food availability and an increased glucocorticoid level. Offspring exposed to these conditions showed delayed motoric development and took longer to learn how to dangle from a branch on one leg, to jump backwards or to leap at least five meters far in the canopy of the forest. When an outbreak of conjunctivitis occurred, the external signs were noticed in the infant the longer, the more stress their mothers experienced during gestation. Thus, also the immune system seems to be affected.

It remains unclear whether the prenatal stress also affected the cognitive development of the offspring. Further investigations are needed to determine whether adverse prenatal conditions increase reproductive rates of macaques and reduce their longevity, as predicted by the hypothesis of the internal adaptive response.

Original Publication:

Andreas Berghänel, Michael Heistermann, Oliver Schülke and Julia Ostner (2016): Prenatal stress effects in a wild, long-lived primate: predictive adaptive responses in an unpredictable environment. Proceedings of the Royal Society B. 20161304.
http://dx.doi.org/10.1098/rspb.2016.1304

Contact and notes for editors:

Andreas Berghänel
Tel: +49 176 2112 3898
E-mail: abergha@gwdg.de

Luzie Almenräder (Communication)
Tel: +49 551 3851-424
E-mail: lalmenraeder@dpz.eu

Printable pictures are available in our Media library. We kindly request a specimen copy in case of publication.

The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ maintains four field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 88 research and infrastructure facilities of the Leibniz Association.

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft
Further information:
http://dpz.eu/

Further reports about: DPZ Primatenforschung Primatenzentrum food shortages immune system macaques monkeys

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>