Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory Bacterial Swarm Uses Rippling Motion to Reach Prey

31.10.2008
Like something from a horror movie, the swarm of bacteria ripples purposefully toward their prey, devours it and moves on.

Researchers at the University of Iowa are studying this behavior in Myxococcus xanthus (M. xanthus), a bacterium commonly found in soil, which preys on other bacteria.

Despite its deadly role in the bacterial world, M. xanthus is harmless to humans and might one day be used beneficially to destroy harmful bacteria on surfaces or in human infections, said John Kirby, Ph.D., associate professor of microbiology in the UI Roy J. and Lucille A. Carver College of Medicine.

"It may be that we can modify this predator-prey relationship or apply it to medically relevant situations," Kirby said. "It would be amazing if we could adapt its predatory ability to get rid of harmful bacteria that reside in places we don't want them, including in hospitals or on medical implants."

M. xanthus lives in a multi-cellular unit that can change its structure and behavior in response to changing availability of prey.

This adaptive ability to control movement in response to an environmental stimulus is called chemotaxis, and the research team coined the term predataxis to describe M. xanthus behavior in response to prey.

In earlier studies, Kirby and James Berleman, Ph.D., a postdoctoral fellow in Kirby's lab, showed that the presence of prey causes M. xanthus to form parallel rippling waves that move toward and through prey bacteria. Now, how the bacteria organize to form these traveling waves in response to the presence of prey is the subject of the UI team's latest study, which was published online Oct. 24 in Proceedings of the National Academy of Sciences (PNAS) Early Edition.

"When an M. xanthus aggregate is placed inside a colony of E. coli bacteria, the M. xanthus proceeds to eat the colony from the inside out and creates a rippling pattern as the swarm moves through the prey cells," Kirby said. "We now know that this rippling pattern is the highly organized behavior of thousands of cells working in concert to digest the prey."

Unlike the random motion M. xanthus exhibits at low levels of prey, the study shows that during predation, individual M. xanthus cells line up perpendicular to the axis of the ripple and move back and forth. This motion of individual cells, known as cell reversal produces an alternating pattern of high and low cell density like crests and troughs of waves, and the overall motion of the wave formation is directed toward prey.

The UI team also showed that the ripple wavelength is adaptable and dependent of how much prey is available. At high prey density, M. xanthus forms ripples with shorter wavelengths. As prey density decreases, the ripple wavelength gets longer. Eventually, when there is no more prey, the rippling behavior dissipates.

"The rippling appears to enhance predation by keeping more M. xanthus cells in the location of the prey cells," Kirby said.

Finally, the UI study found that the bacteria use a chemotaxis-like signaling pathway to regulate multi-cellular rippling during predation.

Individual M. xanthus cells move by shooting rope-like projections called pili from either end of the cell. These pili attach to surfaces allowing cells to pull themselves forward or backward in a "spiderman" type motion known as cell reversal. The genes that regulate this cell reversal process are chemotaxis-like genes.

The UI team mutated two genes in this pathway to study their effect on the predatory ability of the bacterium. One mutant strain rippled continuously even in the absence of prey, and individual cells exhibited a hyper-reversing action. Conversely, the second mutation produced bacteria that were not able to ripple at all.

Both mutants were unable to respond to changes in the amount of available prey and both mutant strains were deficient in predation.

"Our study really connects the stimulus to the behavioral response through this molecular machinery," Kirby said.

In addition the potential medical application of M. xanthus to destroy harmful bacteria, what Kirby learns about the molecular mechanisms used by the bacterium may also provide insights into the workings of a rarer, but potentially useful, bacterial cousin. The related bacterium, Anaeromyxobacter dehalogenans, has been found at superfund sites and it can transform soluble uranium, which can leach into the water supply, into insoluble uranium, which still is radioactive, but is stable and trapped in the soil where it can be more safely stored until the radioactivity decays.

In addition to Kirby and Berleman, the UI team included Jodie Scott and Tatiana Chumley.

The research was funded in part by the National Institutes of Health.

Jennifer Brown | Newswise Science News
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>