Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise, Highly Efficient Gene Repair

29.08.2018

Heidelberg researchers develop new CRISPR/Cas process using Japanese ricefish

The molecular tool CRISPR/Cas allows introducing DNA double strand breaks into any gene of interest consequently resulting in stochastic mutations at the site of the target gene. However, precise gene repair through the application of a rescue construct suffers from limited efficiency.


Medaka embryo, in which the Rx2 gene – a gene critical for eye development – was edited with a repair copy. (Complete caption: see text

Gutierrez-Triana, Tavhelidse, Thumberger et al., 2018, figure three, subject to CC BY 4.0 license

Researchers at Heidelberg University have now found a solution for this problem. Applying their new approach on the model organism medaka, the researchers laid the groundwork for easily integrating the repair copy of a defective gene into the DNA.

As developmental biologist Prof. Dr Joachim Wittbrodt explains, this efficient process makes precise genome editing possible in basic research, bringing the tool much closer to its application in medical treatment. The research results were published in “eLife”.

... more about:
»CRISPR »DNA »RNA »organism

Gene editing involves finding and targeting the precise location in the genome that causes gene mutations. A guide RNA is constructed for this task. It consists of RNA sequences that are complementary to the target DNA sequence.

The guide RNA docks at the desired location of the DNA where the CRISPR/Cas as a pair of molecular “scissors” cuts the double strand. The cell's own repair system then jumps into action. Individual DNA building blocks can get lost upon repair of these breaks, causing stochastic mutations in selected target genes.

According to Prof. Wittbrodt of Heidelberg University‘s Centre for Organismal Studies, this method has been used successfully in virtually every organism studied.

However, routine use of precise editing that result in exactly defined modifications in any gene remained elusive so far. As Dr Arturo Gutierrez explains, the cell's own repair system, which quickly closes the breaks in the double DNA strand, is to blame. Whereas this mechanism, known as “Non-Homologous End Joining” (NHEJ), is not a problem for efficiently introducing stochastic genetic modifications, it competes with a second, extremely precise repair process called “Homology Directed Repair” (HDR).

Just like when a replacement part is installed, both ends have to fit perfectly, so that HDR can replace the defective gene with the correct repair copy. “Unfortunately, NHEJ connects the copies introduced into the cells into long continuous chains, rendering them unusable,” says Tinatini Tavhelidse.

Using the Japanese ricefish medaka, Prof. Wittbrodt's team developed and validated a new approach that enables highly efficient, precise genetic repair, which is a basic prerequisite for application in gene surgery.

The Heidelberg researchers pursued a simple idea. Instead of using pharmacological compounds with serious side effects to mitigate the unwanted effects of NHEJ, they modified the repair copy such that it could not be "attacked" and rendered useless. Both ends of the copy are blocked by biotin – a B vitamin – to prevent non-homologous end joining. "This inexpensive process now enables efficient gene repair by precisely inserting a single repair copy," adds Dr Thomas Thumberger.

Caption:
Medaka embryo, in which the Rx2 gene – a gene critical for eye development – was edited with a repair copy. This copy contains the sequence for a green fluorescent protein.
Source: Gutierrez-Triana, Tavhelidse, Thumberger et al., 2018, figure three, subject to CC BY 4.0 license

Contact:
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr Joachim Wittbrodt
Centre for Organismal Studies
Phone +49 6221 54-6499
jochen.wittbrodt@cos.uni-heidelberg.de

Originalpublikation:

J.A. Gutierrez-Triana, T. Tavhelidse, T. Thumberger, I. Thomas, B. Wittbrodt, T. Kellner, K. Anlas, E. Tsingos and J. Wittbrodt: Efficient single-copy HDR by 5’ modified long dsDNA donors. eLife, https://doi.org/10.7554/eLife.39468

Weitere Informationen:

https://www.cos.uni-heidelberg.de/index.php/index.php/j.wittbrodt?l=_e

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: CRISPR DNA RNA organism

More articles from Life Sciences:

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

nachricht Nerve cells in the human brain can “count”
21.09.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>