Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise gene transfer into therapy relevant cells after vector injection into blood

10.02.2015

Therapeutic gene transfer is considered as a promising novel strategy to treat genetic disorders and cancer. So far, target cells are often isolated from patients for this purpose, and re-administered after gene transfer. In collaboration with colleagues from the Universities of Cologne and Zurich, researchers at the Paul-Ehrlich-Institut have succeeded in developing gene transfer vehicles that target the therapy relevant cell type directly in the organism. The resulting gene transfer occurs with an extremely high degree of selectivity. A report on the research results can be found in Nature Communications in its online edition of 10.02.2015.

Vectors derived from adeno-associated viruses (AAV) were used as vehicles for targeted gene transfer by the research group of Professor Christian J. Buchholz, Principal Investigator at the LOEWE Centre for Cell and Gene Therapy at Frankfurt am Main and head of the Section “Molecular Biotechnology and Gene Therapy ” of the President of the Paul-Ehrlich-Institut.


AAV is a non-pathogenic parvovirus. The only gene therapy medicinal product authorised in Europe so far, is also based on AAV gene vectors and intended for the treatment of a rare metabolic disorder.

The strategy for the generation of the new precision gene vectors was developed and implemented jointly with Dr Hildegard Büning, head of the AAV Vector Development Research Group at the ZMMK (Zentrum für Molekulare Medizin Köln, Center for Molecular Medicine Cologne) of the University of Cologne: Through exchange of two amino acids, AAV lost its ability to bind to its natural receptor and became thereby unable to penetrate its broad range of natural target cells.

Novel target structures (DARPins, designed ankyrin repeat proteins) were then attached to the surface of the modified vector particles. These structures were developed at Zurich University. The structures can be selected in such a way that they mediate a selective binding of the DARPin-containing AAV vector particles to the therapy relevant cell type only.

This is what enables the AAV vector to attach to and penetrate the desired target cell. The paper referenced here reports on the use of three different DARPins, which equipped AAV vectors either with a specificity for Her2/neu, a tumour marker in breast cancer, for EpCAM, an epithelial surface protein, or for a marker of particular blood cells (CD4 on the surface of lymphocytes with distinct immunological functions).

In the mouse model, the vector for Her2/neu targeted 80 percent of all metastatic sites after only a single injection. If the vector was armed with a cytotoxic gene, the survival rate of the mice was substantially prolonged compared to mice receiving an authorised anti-tumour product. Using the EpCAM-targeted vector, tumour cells could be detected with impressive sensitivity in human blood (few hundred tumour cells in several millilitres of blood).

The desired goal of a cell type specific in vivo gene transfer was also achieved with the blood cell targeted vector: AAV transferred the gene only into lymphocytes present in spleen carrying the CD4 protein target structure.

“The method developed by us jointly is a very promising tool both in fundamental research and for the targeted gene transfer in medicine“, explained Dr Buchholz with regard to the current research results.

Original Publication

Münch RC, Muth A, Muik A, Friedel T, Schmatz J, Dreier B, Trkola A, Plückthun A, Büning H, Buchholz CJ (2015): Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun Feb 10 [Epub ahead of print].
http://www.nature.com/ncomms/2015/150210/ncomms7246/full/ncomms7246.html

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen near Frankfurt/Main, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.pei.de

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

nachricht New findings help to better calculate the oceans’ contribution to climate regulation
15.11.2018 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

Automated adhesive film placement and stringer integration for aircraft manufacture

15.11.2018 | Materials Sciences

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>