Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise Decoding of Breast Cancer Cells Creates New Option for Treatment

16.04.2019

Researchers at the University of Zurich and from IBM Research have investigated the varying composition of cancer and immune cells in over one hundred breast tumors. They've found that aggressive tumors are often dominated by a single type of tumor cell. If certain immune cells are present as well, an immune therapy could be successful for a specific group of breast cancer patients.

Every year more than 1.7 million women all over the world are diagnosed with breast cancer, with the disease ending fatally for around half a million patients. In the fight against breast cancer, research is being done into novel therapeutic approaches that are designed to target cancer cells more precisely and also activate the tumor-associated immune system. So far, however, little has been known about the different cancer and immune cells present within a tumor, and how they differ from patient to patient.


Breast tumors are complex ecosystems. The image shows an invasive breast cancer consisting of many different tumor cell types surrounded and infiltrated by many immune cells.

Johanna Wagner / UZH

Mass cytometry unravels diversity of cells

Johanna Wagner of the University of Zurich joined forces with Marianna Rapsomaniki of IBM Research in Rüschlikon and the Patients' Tumor Bank of Hope to use mass cytometry to exam-ine several million cancer and immune cells from 140 patients, as the basis for creating an atlas of tumor and immune cells.

"Using this technology we were able to examine the diversity of can-cer cells very precisely and describe how many different types of cancer cells are present in a tumor," explains Wagner, who's working on her PhD under the supervision of Bernd Bodenmiller, professor at the new Department of Quantitative Biomedicine, whose group specializes in the precision medicine analysis of tissues.

In parallel to this they also analyzed the immune system's tumor-associated macrophages and T-cells, which could attack the tumor - but also support it. If the activated immune system launches a successful attack, the breast cancer cells are destroyed. But if the nearby immune cells are inactivated, the breast cancer cells survive the attack.

Every tumor is unique in terms of its cellular composition

The researchers discovered that the previous assumption that a greater diversity of tumor cells was present in more aggressive tumors was false. More aggressive tumors are in most cases dominated by one single type of tumor cell, which often displays a high degree of abnormality.

"Every tumor we looked at was unique in terms of its cellular composition, which varied from pa-tient to patient. This could be one of the reasons why we're having such difficulty treating breast cancer," says Wagner.

Breast cancer patients could benefit from immune therapy

At the same time, the scientists discovered similarities in the tumor-associated immune system between the aggressive tumors. Among one group of breast cancer patients they found an ac-cumulation of inactive immune cells that are successfully activated by immune therapy to fight lung and skin cancer. This included patients who previously weren't considered suitable candi-dates for immune therapy to treat breast cancer.

A comprehensive analysis of a tumor's entire cancer and immune cells could thus be a good basis for therapies in precision medicine. "Our findings suggest that immune therapy might pos-sibly work for breast cancer. We'll be doing further studies on this, and if they're successful will extend them into a clinical trial," explains Professor Bodenmiller.

Wissenschaftliche Ansprechpartner:

Professor Bernd Bodenmiller
Department of Quantitative Biomedicine
University of Zurich
Tel. +41 79 1798029
E-mail: bernd.bodenmiller@imls.uzh.ch

Originalpublikation:

Literature:
Wagner, Johanna et al.: A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell Press, April 11, 2019. DOI: 10.1016/j.cell.2019.03.005

Weitere Informationen:

https://www.media.uzh.ch/en/Press-Releases/2019/Breast-Cancer.html

Melanie Nyfeler | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Getting to the root of plant simulations
15.04.2019 | DOE/Argonne National Laboratory

nachricht Bacteria surrounding coral reefs change in synchrony, even across great distance
15.04.2019 | University of Hawaii at Manoa

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

European Geosciences Union meeting: ExoMars press conference, live streams, on-site registration

02.04.2019 | Event News

 
Latest News

"Flight recorder" of rocks within the Earth’s crust

16.04.2019 | Earth Sciences

Precise Decoding of Breast Cancer Cells Creates New Option for Treatment

16.04.2019 | Life Sciences

Valence-bond revival in magnetism

16.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>