Popular fungicides failing, may cause hard choices for apple growers

Janna Beckerman, an associate professor of botany and plant pathology, said that extensive, long-term use of four popular fungicides has led to resistances in apples in Indiana and Michigan, the focus of her study.

“The fungicides that are regularly used to control scab have started to fail,” said Beckerman, whose findings were published in the early online version of the journal Plant Disease. “But the most disturbing thing we found is that many of the samples we tested were resistant to all four fungicides. It's kind of like multidrug resistance in antibiotics. This is full-blown resistance.”

Apple scab, caused by the fungus Venturia inaequalis, is highly destructive to apples, causing brown lesions on leaves and fruit. A single lesion can reduce an apple's value by 85 percent. Over time, the scabby lesion will crack and allow insects, other fungi and bacteria inside, causing a loss of the crop.

“It can cause orchard failures,” Beckerman said. “An orchard grower that has this could lose blocks of an orchard, or depending on the amount of diversity in the orchard, they could lose the entire crop.”

It's thought that when organisms adapt to form resistance, that change will weaken the organism in some other way. Beckerman said the study, done with Purdue graduate student Kim Chapman and Michigan State University professor George Sundin, showed apple scab, on the contrary, is becoming resistant to fungicides with no apparent fitness penalty to itself.

“Having these multiple resistances to fungicides doesn't debilitate them in any way,” Beckerman said.

Apple scab samples were treated with dodine, kresoxim-methyl, myclobutanil or thiophanate-methyl. About 12 percent of the apple scab samples tested was resistant to all four fungicides.

The only options apple growers have, Beckerman said, is to use older fungicides that are tightly regulated, require more frequent application and are more expensive.

“It's going to change how growers manage their orchards,” Beckerman said. “The more susceptible apple cultivars, like McIntosh, will become more chemically intensive to manage. Growers have few options as it is, and this will limit their options even further.”

Beckerman said she and her collaborators would work to develop faster tests to detect fungicide resistance in apple scab to help growers change management plans in a timely manner. The U.S. Department of Agriculture, Purdue University and the Michigan Agricultural Experiment Station funded the research.

A publication-quality photo is available at http://www.purdue.edu/uns/images/2011/beckerman-applescab.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110712BeckermanScab.html

Media Contact

Brian Wallheimer EurekAlert!

More Information:

http://www.purdue.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors