Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants self heal

23.05.2011
Identification a master regulator of the response of plants to injury sheds light on organ regeneration

Many animals and plants regenerate tissues or even whole organs after injury. Typically, specialized cells at the wound site revert to a ‘pluripotent’ state–via a process called dedifferentiation—which means they regain the ability to develop into the various cell types required for regeneration.


Figure 1: Arabidopsis plants grown without plant hormones. Compared to the wild-type plants (left) those over expressing WIND1 (right) can exhibit a range of developmental abnormalities including dedifferentiated callus-like cells masses instead of roots and shoots. Copyright : 2011 Akira Iwase and Keiko Sugimoto

The dedifferentiated cells rapidly divide to form a callus from which the damaged tissue or organ will regenerate. Now, a research team from the RIKEN Plant Science Center in Yokohama has identified a master regulator of the response of plants to injury (1).

Developmental biologists have evidence that the mammalian wound response is genetically programmed, involving transcription factors—proteins that regulate gene expression. However, the precise molecular mechanisms underlying the cell dedifferentiation and redifferentiation are poorly understood for both animals and plants, explains team leader Keiko Sugimoto.

Akira Iwase, a senior postdoctoral researcher in Sugimoto’s laboratory, previously identified the transcription factor WIND1 that was expressed in cultured Arabidopsis cells but not in healthy seedlings. His findings suggested that WIND1 might be involved in the wound response. Using transgenic seedlings, Iwase along with Sugimoto and their colleagues have now demonstrated that WIND1 expression increases markedly at wound sites within hours of injury and continues throughout callus development.

Iwase, Sugimoto and colleagues further showed that Arabidopsis seedlings that were genetically engineered to over express WIND1 exhibited a range of developmental abnormalities (Fig. 1). They found that the most severe defects were associated with particularly high levels of WIND1 expression. These included aborted development after germination and the growth of undifferentiated callus-like cell masses at the places where roots or shoots would normally form.

In addition, the researchers found that the callus-like cell masses continued to proliferate rapidly when removed from the plant and grown in culture. This occurred even in the absence in the culture medium of auxin and cytokinin, two plant hormones long known to be involved in the normal regeneration process. Further experiments also confirmed the importance of WIND1 in callus formation in vivo.

The researchers then investigated the mode of action of WIND1. They found that wounding induced a cytokinin response involving increased expression of the so-called ‘B-type Arabidopsis response regulator’ (ARR). Further experiments confirmed that WIND1 acts via the ARR-dependent signaling pathway to promote cell dedifferentiation.

“Our findings clearly demonstrate that WIND1 functions as a key molecular switch triggering cell dedifferentiation in Arabidopsis,” explains Sugimoto. “The discovery of WIND1 should allow us to establish specific role of transcriptional regulators in cell dedifferentiation.”

The corresponding author for this highlight is based at the Cell Function Research Unit, RIKEN Plant Science Center

Journal information

(1) Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K. & Ohme-Takagi, M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology 21, 508–514 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>