Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant immunity comes at a price. An overzealous immune system can be deadly

21.11.2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria and so on, they have developed an effective immune system. And just as in humans, this can also overshoot its target when some of the plant’s own proteins are mistakenly identified as foreign. Such autoimmune reactions can lead to tissue defects and growth arrest, and they are particularly apparent in hybrids.

Scientists from the Max Planck Institute for Developmental Biology in Germany have now pinpointed the most common culprits for autoimmunity. Surprisingly, these are components of the immune system itself, which are mistakenly recognized by other immune receptors as intruders.

Similar to the situation in animals, immunity in plants relies on highly variable immune receptors. "Not only do plants often have hundreds of so-called NLR immune genes, but each individual in a population tends to have its own collection of NLR genes, and is thus resistant against a unique spectrum of microbes, insects and worms ", explains Detlef Weigel, Director at the Max Planck Institute for Developmental Biology.

With this arsenal at hand, a plant can successfully defy a multitude of pathogens. Because each individual in a field has a different recognition spectrum, it is difficult for pathogens to wipe out the entire population. This great diversity can, however, also lead to accidents, such that a plant no longer reliably distinguishes between self and non-self and fights its own proteins. The misfortune occurs particularly often when two different immune systems are combined in the offspring of crosses.

To investigate the genetic basis of autoimmunity after crosses, the Max Planck scientists generated over 6400 crosses between natural strains of Arabidopsis thaliana. The parental lines were from different locations around the world and covered almost the entire genetic bandwidth of the species. The progeny of the crosses were then examined for evidence of autoimmunity.

Roughly every 50th cross led to typical autoimmune symptoms; in the most extreme cases, the progeny died already as seedlings and no longer reproduced. Because this occurred in the absence of pathogens, it must have been plant proteins that were mistakenly detected as foreign by the immune system of these hybrid plants. “Remarkably, the responsible proteins originated from only very few of the highly variable immune genes, even though Arabidopsis has more than a hundred of them”, says Eunyoung Chae, the lead author of the study.

Growth and defence in balance

According to Weigel, it was a surprise that certain combinations of immune genes are so often lethal. The causal variants presumably are advantageous on their own, normally providing resistance to pathogens without hurting the plant, but the wrong combinations can be detrimental. Still, the individual advantages must be sufficiently great, so that such variants can occur even in the same field.

The researchers suggest that the observed cases of autoimmunity in hybrids represent only the tip of the iceberg. "Because we applied strict criteria for classifying crosses as being associated with autoimmunity, it is likely that there are many other crosses where there is no apparent tissue damage, but still a growth penalty," explains Chae.

By systematically analysing which immune receptors are particularly dangerous and which combinations are best avoided, the Max Planck researchers hope to derive rules that will be useful in optimizing the trade-off between growth and defence, not only in wild plants such as Arabidopsis, but also in crops. Given the ever-increasing needs of a growing world population, streamlined ways to improve food crops are of great importance.

Participating researchers and institutions:
Eunyoung Chae, Kirsten Bomblies, Sang-Tae Kim, Darya Karelina, Maricris Zaidem, Stephan Ossowski, Carmen Martín-Pizarro, Roosa A. E. Laitinen, Beth A. Rowan, Hezi Tenenboim, Sarah Lechner, Monika Demar, Anette Habring-Müller, Christa Lanz and Detlef Weigel, Max Planck Institute for Developmental Biology, Tübingen;
Darya Karelina and Gunnar Rätsch, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen.

Original Publication:
Chae et al.
A Species-wide Analysis of Genetic Incompatibilities Identifies NLR Loci as Hotspots of Deleterious Epistasis
Cell, Dec 4, 2014, http://dx.doi.org/10.1016/j.cell.2014.10.049

Nadja Winter | Max-Planck-Institut
Further information:
http://eb.mpg.de

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>