Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant hormone 'switch' unravels chromatin to form flowers, penn biologists find

14.10.2015

Because plants cannot pick up and move, they have evolved a plethora of strategies to cope with environmental stresses, whether they bring a harsh spell of drought or a browsing deer.

One of these strategies is plants' ability to continue growing new, diverse organs, including roots, branches and flowers, throughout their lifespan. But of course flowers don't develop just anywhere on the plant; they only grow from certain cells, which must receive a particular signal to begin the process. While researchers knew that flower formation was governed by the activity of the hormone auxin, they didn't understand precisely how it signaled the plant to form blooms.


Instead of flowers, plants with mutations in certain chromatin remodeling genes developed pin-like structures (right).

Credit: University of Pennsylvania

Now University of Pennsylvania researchers have filled in the gaps and identified a hormone-mediated "chromatin switch" that directs a plant to form flowers. In the absence of auxin, genes that initiate flower formation are tucked away in tangled chromatin, a tightly packed bundle of DNA. But, in the hormone's presence, proteins are recruited to unravel chromatin and make the genes responsible for flower formation more accessible.

The findings could be useful in efforts to strategically boost flower formation as a means of increasing yield in agricultural crops. And the study's contribution to understanding basic mechanisms of chromatin regulation, which may be similar across species and even kingdoms of living things, could have implications for many biological processes, including human health.

... more about:
»flower »genes »hormone »proteins

"This one hormone auxin is very famous because it has many roles, in embryo, root and flower development, in vein formation, in growth -- it's doing all of these things," said Doris Wagner, senior author on the work and a professor of biology in Penn's School of Arts & Sciences. "The question is always, How can one hormone do all these different things? Now we see that, by helping open up chromatin, it can allow a variety of other proteins to come in and initiative these different pathways. All of a sudden these very diverse processes are not so hard to explain anymore."

Wagner collaborated with Penn's Miin-Feng Wu, Nobutoshi Yamaguchi, Jun Xiao and Yi Sang as well as Bastiaan Bargmann and Mark Estelle of the University of California, San Diego.

Their research is published in the journal eLife.

In work published in 2013, Wagner and colleagues began to piece together how auxin regulated flower formation. They already knew that auxin activated the transcription factor MONPTEROS, and went on to identify that factor's direct targets, which included three genes involved in flower development.

But the researchers believed the process was not that simple because those genes were packed tightly away in chromatin, which would prevent them from being activated. There must be another factor that makes those genes available to be transcribed, the team reasoned.

"So we looked on purpose for proteins that are required for making flowers and were also chromatin regulators that might overcome this repressive environment," Wagner said.

Performing experiments in Arabidopsis, the researchers showed that plants with double mutations in SWI/SNF proteins, BRM and SYD, which are known chromatin remodelers, failed to initiate flower formation. Because they can't make flowers, these plants had pointy "pin-like" forms.

The team also showed that BRM and SYD, which are part of a chromatin remodeling complex, bound to the same locations as MONOPTEROS does in the regulatory regions of various genes required for flower development. They also demonstrated that MONOPTEROS physically interacts with BRM and SYD, likely recruiting them to the proper site in the chromatin.

Once at the proper site, the team showed that BRM and SYD, in the presence of auxin, reshape chromatin in a way that makes the flower-formation genes more accessible for transcription and expression.

Wagner's group next artificially guided BRM and SYD to the correct locations in the genome in plant cells. Those cells showed increased expression of flower formation genes, just as cells exposed to auxin did.

When they repeated this experiment in a mutant plant that normally fails to form flowers, they were able to coax it to develop flowers, almost identically to a normal plant.

"We were very surprised to see the flowers come back so dramatically," Wagner said. "And, though we didn't study other aspects exhaustively, it appears that this chromatin-remodeling complex may also rescue leaf formation and perhaps some other plant development processes regulated by auxin."

The findings suggest that this process could be strategically manipulated in order to pack more flowers on one plant, potentially increasing agricultural yields.

There are signs that the auxin pathway and these SWI/SNF proteins are present even in ancient plants, so the process of recruiting chromatin remodelers could be universal in plants.

Auxin is not made in humans, but, as Wagner noted, the chromatin remodelers her team studied are and are known to be tumor suppressors -- proteins that, when mutated, can allow tumors to grow unchecked. Thus, it's conceivable that one could design a hormonal switch, using auxin, to regulate them.

Media Contact

Katherine Unger Baillie
kbaillie@upenn.edu
215-898-9194

 @Penn

http://www.upenn.edu/pennnews 

Katherine Unger Baillie | EurekAlert!

Further reports about: flower genes hormone proteins

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>