Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant flowering time now predictable

23.10.2015

Plants adapt their flowering time to the temperature in their surroundings. But what exactly triggers their flowering at the molecular level? Can this factor switch flowering on or off and thus respond to changes in the climate? In a study currently published in PLOS Genetics, a team headed by Professor Claus Schwechheimer from the Technical University of Munich (TUM) describes a molecular mechanism with which plants adapt their flowering time to ambient temperatures and thereby indicate ways in which the flowering time can be predicted on the basis of genetic information.

Plants adapt their flowering time to the temperature in their surroundings. To flower at the optimal time, they take factors like temperature, day length and temperature fluctuations into account. Although the mechanisms that cause flowering before and after winter are largely known by now, relatively little is known about how plants delay their flowering time during a cold spring.


The scientists discovered a molecular mechanism that causes Scottish thale cress to flower two weeks earlier than its counterparts in warmer regions.

(Foto: U. Lutz/ TUM)

Such processes are very important, particularly in regard of global warming with relatively small fluctuations in temperature, as the correct flowering time guarantees optimum arable yields for farmers – and also ensures that the thale cress Arabidopsis thaliana prevails in the everyday evolutionary struggle for survival.

Crucial gene for early flowerers

In the current edition of the journal PLOS Genetics, the team, headed by Professor Claus Schwechheimer from TU Munich in close cooperation with colleagues from the German Research Center for Environmental Health (Helmholtz Zentrum Neuherberg) and the Max Planck Institute in Tübingen, describe the molecular mechanism with which the thale cress Arabidopsis thaliana adapts its flowering time to the ambient temperature.

Interestingly, the first indication of the existence of this natural gene variation came from the cool latitudes of Scotland. This led the scientists to discover a molecular mechanism that causes Scottish thale cress to flower two weeks earlier than its counterparts in warmer regions. Due to the insertion of a so-called jumping gene (transposon), the formation of the crucial flowering gene was so minimal that the function of the flowering repressor no longer had any effect.

And that’s not all: Ulrich Lutz, first author of the study, was also able to show that this gene mutation has already become established in several other variants of the thale cress and controls flowering behavior in them. The researchers were even able to trace their steps here and predict the flowering behavior of the thale cress based on the presence of the jumping gene (transposon) with a high degree of accuracy. Already in the near future, it should be possible to transfer this knowledge to the flowering behavior of crop plants like rapeseed.

Research helps estimate the ecological consequences of climate change

“Our research will help to enable the estimation of the ecological consequences of climate change,” says Professor Schwechheimer. “Climate change will bring about a change in the flowering behavior of many plants. We researchers must gain a better understanding of the impacts of this temperature change on the world of plants and the organisms that depend on them.”

Plants react to the experience of a long cold winter and to extended cold periods in spring by delaying their flowering time. The molecular mechanisms with which plants perceive these cold periods differ, however. In the case of winter cereals, like winter wheat, the seed can germinate in autumn but the plant does not flower, as it needs the experience of winter to act as a wake-up call indicating that the correct time for flowering has come.

Findings can help food production

The genes that regulate this process are already known in many plants. In spring wheat, for example, they have been modified by conventional breeding that the plant flowers even if it is planted in spring. The temperatures in a cool or warm spring also affect flowering behavior; however, very little is known about this. Given that small changes of just a few degrees Celsius can have a negative impact on agricultural production, it is important to understand these processes.

The findings of the research team from the TUM Chair of Plant Systems Biology could help with the prediction and even modification of plant flowering time in the future. Such insights are also important for plant breeding to ensure that food production can be guaranteed in the long term in the context of progressive global warming.

Publication:
Ulrich Lutz, David Posé, Matthias Pfeifer, Heidrun Gundlach, Jörg Hagmann, Congmao Wang, Detlef Weigel, Klaus F. X. Mayer, Markus Schmid, Claus Schwechheimer: Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M, PLOS Genetics October 22, 2015. DOI:10.1371/journal.pgen.1005588

Contact:
Prof. Dr. Claus Schwechheimer
Technical University of Munich (TUM)
Department of Plant Systems Biology
Tel: +49/(0)8161/71 2880
E-Mail: claus.schwechheimer@wzw.tum.de
http://www.sysbiol.wzw.tum.de/

Ulrich Lutz
Technical University of Munich (TUM)
Department of Plant Systems Biology
Tel: +49/(0)8161/71 2879
E-Mail: ulrich.lutz@wzw.tum.de
http://www.sysbiol.wzw.tum.de/

Weitere Informationen:

http://www.tum.de/en/about-tum/news/press-releases/short/article/32705/

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>