Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant enzymes reveal complex secrets

12.03.2012
Biologists are uncovering intricate pathways underlying the chemical modification of a functionally important class of plant molecules
The enzymes needed for producing and chemically modifying functionally important plant molecules called anthocyanins have been identified by a research team led by Kazuki Saito of the RIKEN Plant Science Center, Yokohama.

Anthocyanins belong to a class of organic compounds called flavonoids, which are naturally produced by plants. Defined as secondary metabolites, which have various functions, they are not required directly for development, growth or reproduction. As pigments, they produce some of the colors that flowers need to attract insect pollinators. Others protect against damaging ultraviolet light or defend against plant diseases. The flavonoids secreted from the roots of legumes, such as peas, facilitate interactions with soil microbes that are ultimately beneficial for plant growth. Many of the flavonoids ingested by humans promote good health, or even protect against cancer.

“The biosynthetic pathways that give rise to flavonoids are complex, involving multiple enzymes,” says Saito. “These enzymes are encoded by multi-gene families, making it difficult to elucidate their precise physiological functions.”

Saito’s team set out to identify genes involved in flavonoid biosynthesis in Arabidopsis thaliana, a species often used as an experimental model in plant genetics. The availability of the complete genome sequence of Arabidopsis has allowed the development of ‘omics’-based databases and bio-resources. “Just as the genome contains information about all of the plant’s genes, the proteome and transcriptome contain information about protein and gene expression, respectively, whereas the metabolome signifies metabolites, including secondary metabolites such as flavonoids,” explains Saito.

Taking advantage of this information, and using sophisticated genetic and analytical techniques, Saito and colleagues found that the genes UGT79B1 and UGT84A2, which encode enzymes called UDP-dependent glycosyltransferases (UGTs), clustered with other genes involved in producing anthocyanins. When they deleted the UGT79B1 gene in Arabidopsis plants, they found it drastically reduced anthocyanin production. Further experiments, using genetically engineered UGT79B1, allowed them to uncover the precise biochemical function of the UGT79B1 enzyme, including its substrate specificity.

The UGT84A2 gene was already known to encode an enzyme that attaches glucose to a molecule called sinapic acid—a building block of anthocyanin sinapoylation, which is a chemically modified type of the anthocyanin molecule. Saito and colleagues experiments revealed that the level of sinapoylated anthocyanin was greatly reduced in mutants lacking the UGT84A2 gene.

The researchers were also able to study the evolutionary relationships of the UGT enzymes in various plant species. “Our work provides a ‘roadmap’ for anthocyanin modification routes in Arabidopsis and other plants,” says Saito.


Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., et al. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal 69, 154–167 (2012).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>