Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pheromones and social status: Machos smell better

08.03.2019

Male house mice are territorial and scent-mark their territories with urine – and dominant, territorial males have much greater reproductive success than other males. A study conducted by researchers from Vetmeduni Vienna and published in Scientific Reports now shows that female mice display preferential olfactory attraction to the scent of dominant males, and that dominant males have higher pheromone production than subordinates.

Male house mice produce several pheromones, which are volatile and non-volatile chemical signals that have potent effects on the reproductive physiology and behavior of females.


Mice

© K. Thonhauser/Vetmeduni Vienna

A recent study conducted by researchers from Vetmeduni Vienna now shows that female house mice are attracted to the scent of dominant males, and that these males produce higher levels of certain pheromones compared to subordinates.

The scent of male dominance is sexy

It has long been known that male house mice mark their territories with urine, which contains a variety of pheromones. The research team led by Dustin Penn from Vetmeduni Vienna now discovered that male mice more than double the excretion of major urinary proteins (MUPs) after they acquire a territory and become socially dominant.

MUPs bind and stabilize the release of volatile pheromones, and some MUPs exhibit pheromonal properties themselves. As Penn explains: “We also conducted olfactory tests and found that sexually receptive female mice were more attracted by the scent of dominant than subordinate males, whereas non-receptive females did not show this olfactory preference.”

The chemical basis of dominance

The researchers conducted additional analyses to determine which compounds influence female attraction. They found that dominant males differentially upregulated the excretion of particular MUPs, including the pheromone MUP20 (darcin), and a volatile pheromone that influences female reproductive physiology and behaviour.

“Our findings show that once male house mice become territorial and socially dominant, they upregulate the amount and types of excreted MUPs, which increases the intensities of volatiles and the attractiveness of their urinary scent to sexually receptive females,” says Penn.

Pioneering study on pheromone production in mammals

The present study is the first to demonstrate that dominant, territorial males upregulate their pheromone production. “This finding is a fascinating example of how changes in social behaviour can affect gene expression. The present results are of enormous interest for behavioural biologists, especially with regard to chemosensory communication,” says Penn.

What MUPs are and what they do

Male house mice, like many animals, produce volatile pheromones that influence the reproductive physiology and behaviour of females. These pheromones are transported to the urine by so-called major urinary proteins (MUPs) encoded by 21 MUP genes. MUP genes are produced mainly in the liver and excreted in urine.

The researchers were not surprised that male mice produce such a great amount of protein in their urine, and much more than females. MUPs transport not only pheromones in the urine, they also stabilize their release from scent marks. Without this mechanism, the pheromones in scent-marks would quickly disappear. One of the functions of the MUPs is to attract females – especially MUP20, also known as darcin, named after Mr. Darcy in Jane Austen’s romantic novel Pride and Prejudice.

As female mice prefer to mate with socially dominant males, the research team assumed that males regulate the amount of MUPs that they produce in order to advertise their social status and attract females. The present study confirms this hypothesis. Humans actually do not excrete MUPs, as the only MUP gene in the human genome is 'dead', i.e., it is a non-functional pseudogene.

Why are females attracted to the scent of dominant males?

Future studies are now needed to examine the exact mechanisms through which dominant male mice regulate these pheromones and how they influence mating success. Since social status of male house mice is influenced by phenotypic and genetic quality (e.g., inbreeding), these findings suggest that MUP excretion may provide a reliable indicator of the quality of potential mates.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2018, it occupies the excellent place 6 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
E georg.mair@vetmeduni.ac.at

Wissenschaftliche Ansprechpartner:

Dustin Penn
Konrad-Lorenz-Institute of Ethology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-7323
E dustin.penn@vetmeduni.ac.at

Originalpublikation:

The article “Regulation of volatile and nonvolatile pheromone attractants depends upon male social status” by M. Thoß, K. C. Luzynski, V. M. Enk, E. Razzazi-Fazeli, J. Kwak, I. Ortner and D. J. Penn was published in Scientific Reports.
https://www.nature.com/articles/s41598-018-36887-y

Weitere Informationen:

https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/ph...

Mag. Georg Mair | idw - Informationsdienst Wissenschaft

Further reports about: Veterinary Medicine Vetmeduni female mice pheromones social status

More articles from Life Sciences:

nachricht Scientists discover how the molecule-sorting station in our cells is formed and maintained
18.11.2019 | Tokyo University of Science

nachricht Pesticides: Improved effect prediction of low toxicant concentrations
18.11.2019 | Helmholtz Centre for Environmental Research - UFZ

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>