Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The petunia points the way to better harvests

08.03.2012
Most plants live in symbiosis with soil fungi and are supplied with water and nutrients as a result.
Based on the petunia, plant biologists at the University of Zurich have now discovered that a special transport protein is required to establish this symbiotic relationship. The targeted control of this protein could lead to greater harvests.

About 80 percent of all terrestrial plants enter into a symbiotic relationship with fungi living in the soil. The fungi provide the plant with water, important nutrients like phosphate and nitrate, and certain trace elements like zinc; the plant, on the other hand, supplies the fungus with carbohydrates. It is assumed that plants were only able to migrate onto land 400 million years ago thanks to this symbiosis.

The formation of this symbiosis is a strictly regulated process that the plant activates in low nutrient levels. The roots release the hormone strigolactone, which is detected by the fungi. The fungal hyphae grow towards the roots, penetrate the epidermis and isolated passage cells, and enter the root cortex. There, the fungal hyphae form tiny branch-like networks, which resemble little trees (arbusculum) and gave the symbiotic relationship its name: vesicular-arbuscular mycorrhizal symbiosis.

Until about five years ago, the hormone strigolactone was known to induce and entice parasitic plant seeds in the soil to germinate. At that stage, no-one understood why plants produced this substance, which is harmful to them. Only when the new role of strigolactone in mycorrhiza formation was discovered did it become clear that the attraction of the parasites was a harmful side effect of the symbiosis.

How do strigolactones get into the soil?

Exactly how strigolactones are released into the soil from the roots and how the fungi find the specialized entry points in the roots was not known until now. The research group headed by Professor Enrico Martinoia from the University of Zurich has now found the answers to these questions in collaboration with Professor Harro Bouwmeester’s team from Wageningen in the Netherlands. “Based on the model plant the petunia, we were able to demonstrate that the protein PhPDR1 transports strigolactones,” explains Professor Martinoia. The protein belongs to the ABC-transporter family found in simple organisms like bacteria, but also in humans.

The researchers observed that PhPDR1 is expressed more highly in a low nutrient content in order to attract more symbiotic fungi, which then supply more nutrients. But there are also plants like the model plant Arabidopsis (mouse-ear cress) that do not form any mycorrhiza. If the researchers added PhPDR1, however, the Arabidopsis roots transported strigolactones again.

Improvements in yield and weed control

“Our results will help to improve the mycorrhization of plants in low-nutrient soils,” Professor Martinoia is convinced. “Mycorrhization can thus be triggered where it is inhibited due to dryness or flooding of the soils.” This would enable the plants to be nourished more effectively and achieve a greater harvest. Moreover, thanks to the discovery of the strigolactone transporter the secretion of strigolactone into the soil can be halted, which prevents parasitic plants that use up the host plants’ resources from being attracted. “This is especially important for regions in Africa, where the parasitic weed Striga and other parasitic plants regularly destroy over 60 percent of harvests,” says Martinoia.
Further reading:
Tobias Kretzschmar, Wouter Kohlen, Joelle Sasse, Lorenzo Borghi, Markus Schlegel, Julien B. Bachelier, Didier Reinhardt, Ralph Bours, Harro J. Bouwmeester and Enrico Martinoia. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, doi:10.1038/nature10873.
Contact:
Professor Enrico Martinoia
Institute of Plant Biology
University of Zurich
Tel.: +41 44 634 82 22
Email: enrico.martinoia@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>