Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peptides-on-demand: McGill researcher's radical new green chemistry makes the impossible possible

26.02.2009
Fast and simple 'enabling technology' being offered to the world on open basis

McGill University chemistry professor Chao-Jun (C.J.) Li is known as one of the world leading pioneers in green chemistry, an entirely new approach to the science which eschews the use of toxic, petrochemical-based solvents in favour of basic substances like water and new ways of making molecules.

The environmental benefits of the green approach are obvious and significant, but following the road less travelled is also paying off in purely scientific terms. With these alternative methods, Li and his colleagues have discovered an entirely new way of synthesizing peptides using simple reagents, a process that would be impossible in classical chemistry. Their results will be published Feb. 27 in the online edition of the Proceedings of the National Academy of Sciences (PNAS),

Peptides are short oligomer and polymer substances made up of two or more amino acids linked in a chain. Proteins – also known as polypeptides – are themselves composed of longer chains of peptides. Peptides are enormously important to biological and proteomic research, but classical chemistry provides no easy way to synthesize them, making the potential impact of this discovery very significant.

"Currently, to generate peptides you must use a peptide synthesizer, an expensive piece of high-tech equipment," explained Li, Canada Research Chair in Green Chemistry. "You need to purchase every single separate amino acid unit that makes up the peptide, and feed them into the machine one by one, which then assembles them. Every time you need a new peptide, you need to synthesize it individually from scratch."

Li's new process, by contrast, allows researchers to construct a single, simple "skeleton" peptide which can be modified into any other peptide needed with the addition of a simple reagent.

"If you want to make one peptide or 20 or even 100, you just use a different reagent each time," Li said. "If you use 20 different reagents, you get 20 different peptides."

"This could never have been discovered using the classical form of chemistry," he continued. "Every amino acid unit is very similar to every other one, and classical chemistry simply cannot differentiate one from the other."

The new method is considerably less expensive than traditional techniques, and can readily be adopted by labs anywhere in the world, Li said.

"This is really an enabling new technology," he added, "and since McGill has decided not to patent it, we're making our method available to everyone. We are paying the journal's open access fee, so anyone in the world can access the paper."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>