Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From oxygen transport to melanin formation: Activation mechanism of key enzymes explained

04.06.2009
Researchers from Mainz and Houston make use of cryo-electron microscopy to show the exact process of enzyme activation

Pandinus imperator, the emperor scorpion, is not only popular as a pet, but is also of interest for research purposes. The reason for this is its blue blood, which transports oxygen and distributes it throughout the body.

Like tyrosinase, the key enzyme in melanin synthesis, the blue blood pigment hemocyanin found in the emperor scorpion and other arthropods belongs to a group of special molecules that occur in all organisms and that have many different functions: coloring the skin, hair and eyes, immune response, wound healing or the brown discoloration of fruit.

"When these enzymes mutate, this may result in albinism, or in birth marks when production of the pigment melanin increases, as often seen in melanoma," explains Professor Heinz Decker of Johannes Gutenberg University Mainz. The biophysicist has been studying hemocyanins and the associated tyrosinases for the past 20 years. In cooperation with researchers, Dr. Cong and Dr. Chiu, from the Baylor College of Medicine in Houston he has now been able to show for the first time exactly how the enzymes become active, thereby fulfilling their various functions. This work was published in the journal Structure on 13 May.

The researchers investigated the hemocyanin molecules of the emperor scorpion with the aid of cryo-electron microscopy.

This is done by dissolving the molecules in an extremely thin film of water and then freezing it. The use of this technology means that the water does not form crystals, but an amorphous film of ice, which can then be examined by means of electron microscopy. "The benefit of this method lies in the fact that we can use it to penetrate the inside of the molecules and therefore see exactly what takes place there," says Decker. The molecules house the "active center", the part of the enzyme that carries out its function. Access to the active center is at first blocked. Once the researchers have triggered an appropriate stimulus the structure changes.

"We have seen that a specific domain of the molecules must move before the door to the active center is opened, thus triggering enzyme activity. This allows bulky phenols to reach the active center as a substrate and be converted into active quinones by bonding with oxygen; these quinones can then independently synthesize to melanin". For many years, Decker had been proposing this activation mechanism as a hypothesis in his work, but now it has been directly observed for the first time.

The observations made regarding the oxygen transport molecule hemocyanin can also be applied to tyrosinases. Hemocynanin is so closely related to tyrosinases that it can even be converted into tyrosinases by means of the activation mechanism described. This, too, has been demonstrated in several experiments. New opportunities have thus been created for an improved understanding of disorders or diseases such as albinism and malignant melanoma. The cosmetics industry is interested in this interrelationship, as the color of the skin and hair is determined by the formation of melanin. The food industry could make use of the information to prevent the discoloration of fruit, such as banana peels for example, by inhibiting this mechanism.

This study was funded by the National Center for Research Resources, the Roadmap Initiative for Medical Research (in Houston) and the German Research Foundation (DFG, SFB490) as well as the newly established Research Focus of Computational Sciences in Mainz (CMS) and Research Center for Immunology in Mainz.

Original publication:
Yao Cong, Qinfen Zhang, David Woolford, Thorsten Schweikardt, Htet Khant, Matthew Dougherty, Steven J. Ludtke, Wah Chiu and Heinz Decker
Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy

Structure, Volume 17, Issue 5, 749-758 (13 May 2009)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/structure/abstract/S0969-2126(09)00150-6

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>