Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic probes to image brain electrical activity in laboratory mice

14.07.2010
RIKEN scientists have developed a genetically-encoded fluorescent sensor that can act as a direct optical indicator of signaling activity in the living brain.

This powerful tool, described in a new article from Nature Methods, promises to help neuroscientists identify and monitor the behavior of neural circuits involved in motor activity, sensory perception and other functions.

Researchers have historically analyzed the complex electrical activity of the brain using an invasive approach involving tiny electrodes, whose large size relative to individual nerve cells has limited the number of locations from which neuronal activity can be sampled. Optimal imaging methods overcome this limitation with molecular size probes that transform the electrical signals into an optical reporter signal.

The voltage-sensitive fluorescent proteins (VSFPs) developed by Thomas Knöpfel’s team at the RIKEN Brain Science Institute represent an important step in this direction. These are engineered proteins that reside within the membranes of neurons, each of which is fused to two different fluorescent proteins. Whenever a neuron receives a stimulatory signal, the resulting change in voltage potential in the cell membrane causes the VSFPs to rearrange into a configuration that causes a readily detectable change in the optical signal generated by the VSFP, in a phenomenon known as Förster Resonance Energy Transfer.

Knöpfel’s laboratory pionered the development of these sensors for more than 10 years but up to now the function of these probes was only demonstrated by recording electrical activity from 2-dimensional networks of cultured nerve cells. In the latest edition of Nature Methods, the team presents the first experimental confirmation that these probes are able to report electrical activity of nerve cells in the brains of living mice. The researchers used genetically modified mice to localize the VSFP probe within specific subsets of cortical neurons within a brain area called the somatosensory cortex. Each mouse whisker is wired to discrete neural circuits in the somatosensory cortex, and the researchers found that they could readily detect changes in the membrane voltage of these circuit elements as each whisker was manipulated. Based on these experiments, they were essentially able to reconstruct maps of the cell populations that operate as ‘receptive areas’ for individual whiskers.

Being genetically encoded, VSFPs offer several advantages over other commonly-used approaches to monitoring neuronal activity. They can essentially be ‘programmed’ for selective expression within specific subtypes of neurons or particular regions of the brain, and could be used to chart long-range neural circuits extending over considerable distances, unlike fluorescent dyes that label cells non-specifically and can only be applied within a relatively limited volume of the brain. Other genetically-encoded sensors have been developed that respond to calcium flux in the immediate aftermath of neuronal firing, but these represent indirect indicators and generally respond more slowly to neuronal activity.

Given the high degree of spatial and temporal resolution displayed by the VSFPs in this study, Knöpfel is confident that they will prove a useful tool for researchers hoping to understand how patterns of neuronal activity correlate with behavior or physiological changes in the living brain. “The ability of VSFPs to report faster signals, along with genetic targeting, will allow new approaches to the study of the dynamic interaction of assemblies of neurons,” he says. “This will facilitate the investigation of fundamental questions of information processing in the brain, such as the circuit operations involved in sensing our environment and generation of body movements, but will also be applicable to directly visualize cognitive functions.”

For more information, please contact:

Dr. Thomas Knöpfel
Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9740 / Fax: +81-(0)48-467-9739
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>